{"title":"Red room temperature phosphorescence from lignin","authors":"Hongda Guo, Huanjie Cheng, Ruixia Liu, Xiaoxia Chen, Luyao Wang, Chenhui Yang, Shujun Li, Shouxin Liu, Jian Li, Qingjiang Pan, Tony D James, Zhijun Chen","doi":"10.1002/anie.202421112","DOIUrl":null,"url":null,"abstract":"Materials with red room-temperature phosphorescence (RTP) derived from sustainable sources are crucial but rarely reported. Here, we produced red RTP materials from lignin. Lignin was covalently modified with Upy (1-(6-isocyanatohexyl)-3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl) urea) to obtain Lig-Upy. The Upy in the Lig-Upy promoted the interaction between the aromatic units of lignin and reduced energy gaps of these molecules. As a result, Lig-Upy exhibited red RTP centered at 625 nm with a lifetime of 24.2 ms. Moreover, the hydrogen bonding interactions in Lig-Upy varied when embedded into different matrices, such as polyvinyl alcohol (PVA) or sodium montmorillonite (MTM), inducing a change in RTP wavelength and lifetime. Utilizing these properties, Lig-Upy was used as building blocks for producing materials exhibiting time-dependent phosphorescent colors (TDPCs). Such TDPCs materials have exhibited great potential for visual decorations, information encryption and anti-counterfeiting logos for medicine bottles.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"113 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421112","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Materials with red room-temperature phosphorescence (RTP) derived from sustainable sources are crucial but rarely reported. Here, we produced red RTP materials from lignin. Lignin was covalently modified with Upy (1-(6-isocyanatohexyl)-3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl) urea) to obtain Lig-Upy. The Upy in the Lig-Upy promoted the interaction between the aromatic units of lignin and reduced energy gaps of these molecules. As a result, Lig-Upy exhibited red RTP centered at 625 nm with a lifetime of 24.2 ms. Moreover, the hydrogen bonding interactions in Lig-Upy varied when embedded into different matrices, such as polyvinyl alcohol (PVA) or sodium montmorillonite (MTM), inducing a change in RTP wavelength and lifetime. Utilizing these properties, Lig-Upy was used as building blocks for producing materials exhibiting time-dependent phosphorescent colors (TDPCs). Such TDPCs materials have exhibited great potential for visual decorations, information encryption and anti-counterfeiting logos for medicine bottles.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.