HSS: A Memory-Efficient, Accurate, and Fast Network Measurement Framework in Sliding Windows

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Network and Service Management Pub Date : 2024-09-20 DOI:10.1109/TNSM.2024.3460751
Zijun Hang;Yongjie Wang;Yuliang Lu
{"title":"HSS: A Memory-Efficient, Accurate, and Fast Network Measurement Framework in Sliding Windows","authors":"Zijun Hang;Yongjie Wang;Yuliang Lu","doi":"10.1109/TNSM.2024.3460751","DOIUrl":null,"url":null,"abstract":"Network measurement is indispensable to network management. This paper focuses on three fundamental network measurement tasks: membership query, frequency query, and heavy hitter query. Existing solutions, such as sketches, sliding window algorithms, and the Sliding Sketch framework, struggle to simultaneously achieve memory efficiency, accuracy, real-time operation, and generic application. Accordingly, this paper proposes the Half Sliding Sketch (HSS), an improvement over the state-of-the-art Sliding Sketch framework. The HSS framework is applied to five contemporary sketches for the three aforementioned query tasks. Theoretical analysis reveals that our framework is faster, more memory-efficient and more accurate than the state-of-the-art Sliding Sketch while still being generic. Extensive experimental results reveal that HSS significantly enhances the accuracy for the three query tasks, achieving improvements of \n<inline-formula> <tex-math>$2\\times $ </tex-math></inline-formula>\n to \n<inline-formula> <tex-math>$28.7\\times $ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$1.5\\times $ </tex-math></inline-formula>\n to \n<inline-formula> <tex-math>$9\\times $ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$2.4\\times $ </tex-math></inline-formula>\n to \n<inline-formula> <tex-math>$3.6\\times $ </tex-math></inline-formula>\n, respectively. Moreover, in terms of speed, HSS is \n<inline-formula> <tex-math>$1.2\\times $ </tex-math></inline-formula>\n to \n<inline-formula> <tex-math>$1.5\\times $ </tex-math></inline-formula>\n faster than the Sliding Sketch.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"5958-5976"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684751/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Network measurement is indispensable to network management. This paper focuses on three fundamental network measurement tasks: membership query, frequency query, and heavy hitter query. Existing solutions, such as sketches, sliding window algorithms, and the Sliding Sketch framework, struggle to simultaneously achieve memory efficiency, accuracy, real-time operation, and generic application. Accordingly, this paper proposes the Half Sliding Sketch (HSS), an improvement over the state-of-the-art Sliding Sketch framework. The HSS framework is applied to five contemporary sketches for the three aforementioned query tasks. Theoretical analysis reveals that our framework is faster, more memory-efficient and more accurate than the state-of-the-art Sliding Sketch while still being generic. Extensive experimental results reveal that HSS significantly enhances the accuracy for the three query tasks, achieving improvements of $2\times $ to $28.7\times $ , $1.5\times $ to $9\times $ , and $2.4\times $ to $3.6\times $ , respectively. Moreover, in terms of speed, HSS is $1.2\times $ to $1.5\times $ faster than the Sliding Sketch.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HSS:一种高效、准确、快速的滑动窗口网络测量框架
网络测量是网络管理不可或缺的一部分。本文重点研究了三种基本的网络测量任务:隶属度查询、频率查询和重量级查询。现有的解决方案,如草图、滑动窗口算法和滑动草图框架,努力同时实现内存效率、准确性、实时操作和通用应用。因此,本文提出了半滑动草图(HSS),这是对最先进的滑动草图框架的改进。HSS框架应用于上述三个查询任务的五个当代草图。理论分析表明,我们的框架比最先进的滑动草图更快,内存效率更高,更准确,同时仍然是通用的。大量的实验结果表明,HSS显著提高了这三个查询任务的准确率,分别提高了$2\times $至$28.7\times $, $1.5\times $至$9\times $, $2.4\times $至$3.6\times $。此外,在速度方面,HSS比滑动草图快1.2倍到1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
期刊最新文献
Table of Contents Table of Contents Guest Editors’ Introduction: Special Issue on Robust and Resilient Future Communication Networks A Novel Adaptive Device-Free Passive Indoor Fingerprinting Localization Under Dynamic Environment HSS: A Memory-Efficient, Accurate, and Fast Network Measurement Framework in Sliding Windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1