Mechanism of antimicrobial peptide AMP-17 for inhibition of Aspergillus flavus

IF 2.3 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY Applied Biological Chemistry Pub Date : 2024-12-24 DOI:10.1186/s13765-024-00964-w
Dongxu Song, Mingming Chen, Longbing Yang, Zhenlong Jiao, Jian Peng, Guo Guo
{"title":"Mechanism of antimicrobial peptide AMP-17 for inhibition of Aspergillus flavus","authors":"Dongxu Song,&nbsp;Mingming Chen,&nbsp;Longbing Yang,&nbsp;Zhenlong Jiao,&nbsp;Jian Peng,&nbsp;Guo Guo","doi":"10.1186/s13765-024-00964-w","DOIUrl":null,"url":null,"abstract":"<div><p><i>Aspergillus flavus</i> is a pathogenic fungus with a broad host range, and its secondary metabolite, aflatoxin, recognized as the world’s first naturally occurring carcinogen. Nonetheless, the current control measures for <i>A</i>. <i>flavus</i> are inadequate, thus, it is imperative to seek alternative control methods for this species. In the present study, we identified an antimicrobial peptide AMP-17, which was found to effectively inhibit the conidial germination, growth, conidiation, and aflatoxin production of <i>A. flavus</i>. Additionally, our investigation revealed that the inhibition of <i>A. flavus</i> by AMP-17 is primarily attributed to increase cell membrane permeability, modify cell surface morphology, and compromise cellular integrity, as observed through flow cytometry and scanning electron microscopy. Transcriptome analysis indicated significant transcriptional changes in several genes associated with cell wall, cell membrane, cell cycle, detoxification, and aflatoxin biosynthesis in response to AMP-17 treatment, suggesting disruption of these cellular processes and pathways in <i>A. flavus</i>. Furthermore, AMP-17 exhibited a broad-spectrum antifungal activity against <i>Aspergillus</i> spp. These findings provide a strong theoretical basis for the potential use of AMP-17 as an effective antifungal agent against <i>A. flavus</i>.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00964-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00964-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aspergillus flavus is a pathogenic fungus with a broad host range, and its secondary metabolite, aflatoxin, recognized as the world’s first naturally occurring carcinogen. Nonetheless, the current control measures for A. flavus are inadequate, thus, it is imperative to seek alternative control methods for this species. In the present study, we identified an antimicrobial peptide AMP-17, which was found to effectively inhibit the conidial germination, growth, conidiation, and aflatoxin production of A. flavus. Additionally, our investigation revealed that the inhibition of A. flavus by AMP-17 is primarily attributed to increase cell membrane permeability, modify cell surface morphology, and compromise cellular integrity, as observed through flow cytometry and scanning electron microscopy. Transcriptome analysis indicated significant transcriptional changes in several genes associated with cell wall, cell membrane, cell cycle, detoxification, and aflatoxin biosynthesis in response to AMP-17 treatment, suggesting disruption of these cellular processes and pathways in A. flavus. Furthermore, AMP-17 exhibited a broad-spectrum antifungal activity against Aspergillus spp. These findings provide a strong theoretical basis for the potential use of AMP-17 as an effective antifungal agent against A. flavus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗菌肽AMP-17抑制黄曲霉的作用机制
黄曲霉是一种宿主范围广泛的致病性真菌,其次生代谢产物黄曲霉毒素是世界公认的第一种天然致癌物。然而,目前对黄曲霉的控制措施还不充分,因此,寻找替代的控制方法势在必行。在本研究中,我们鉴定了一种抗菌肽AMP-17,发现它能有效抑制黄曲霉孢子的萌发、生长、分生和黄曲霉毒素的产生。此外,我们的研究发现,通过流式细胞术和扫描电镜观察到,AMP-17对黄曲霉的抑制主要是由于增加细胞膜通透性,改变细胞表面形态,损害细胞完整性。转录组分析显示,AMP-17处理后,与细胞壁、细胞膜、细胞周期、解毒和黄曲霉毒素生物合成相关的几个基因的转录发生了显著变化,表明黄曲霉中这些细胞过程和途径被破坏。此外,AMP-17对黄曲霉具有广谱的抗真菌活性,这为AMP-17作为黄曲霉的有效抗真菌剂的应用提供了强有力的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Biological Chemistry
Applied Biological Chemistry Chemistry-Organic Chemistry
CiteScore
5.40
自引率
6.20%
发文量
70
审稿时长
20 weeks
期刊介绍: Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.
期刊最新文献
Site-selective dimethylation of flavonoids using fusion flavonoid O-methyltransferases The pharmacology, toxicology, and detoxification of Aconitum kusnezoffii Reichb., traditional and modern views Kernel type-based entries are efficient to develop a core collection of maize (Zea mays L.) Investigating the antioxidant and anti-inflammatory potential of Nypa fruticans: a multifaceted approach to skin protection and aging Adsorption characteristics and mechanism of Cd by mealworm frass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1