Circe D van der Heide, Joana D Campeiro, Eline A M Ruigrok, Lilian van den Brink, Shashikanth Ponnala, Shawn M Hillier, Simone U Dalm
{"title":"In vitro and ex vivo evaluation of preclinical models for FAP-targeted theranostics: differences and relevance for radiotracer evaluation.","authors":"Circe D van der Heide, Joana D Campeiro, Eline A M Ruigrok, Lilian van den Brink, Shashikanth Ponnala, Shawn M Hillier, Simone U Dalm","doi":"10.1186/s13550-024-01191-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fibroblast activation protein (FAP) is an attractive target for cancer theranostics. Although FAP-targeted nuclear imaging demonstrated promising clinical results, only sub-optimal results are reported for targeted radionuclide therapy (TRT). Preclinical research is crucial in selecting promising FAP-targeted radiopharmaceuticals and for obtaining an increased understanding of factors essential for FAP-TRT improvement. FAP is mainly expressed by cancer-associated fibroblasts in the tumor stroma and less on cancer cells themselves. Therefore, other (complex) factors impact FAP-TRT efficacy compared to currently clinically applied TRT strategies. For accurate evaluation of these aspects, selection of a representative preclinical model is important. Currently mainly human cancer cell lines transduced to (over)express FAP are applied, lacking clinical representation. It is unclear how these and more physiological FAP-expressing models compare to each other, and whether/how the model influences the study outcome. We aimed to address this by comparing FAP tracer behavior in FAP-transduced HT1080-huFAP and HEK293-huFAP cells, and endogenous FAP-expressing U-87 MG cancer cells and PS-1 pancreatic stellate cells. [<sup>111</sup>In]In-FAPI-46 and a fluorescent FAP-targeted tracer (RTX-1370S) were used to compare tracer binding/uptake and localization in vitro and ex vivo. Additionally, FAP expression was determined with RT-qPCR and anti-FAP IHC.</p><p><strong>Results: </strong>Although FAP expression was highest in HEK293-huFAP cells and cell line derived xenografts, this did not result in the highest tracer uptake. [<sup>111</sup>In]In-FAPI-46 uptake was highest in HT1080-huFAP, closely followed by HEK293-huFAP, and a 6-10-fold lower uptake for U-87 MG and PS-1 cells. However, ex vivo U-87 MG xenografts only showed a 2-fold lower binding compared to HT1080-huFAP and HEK293-huFAP xenografts, mainly because the cell line attracts murine fibroblasts as demonstrated in our RT-qPCR and IHC studies.</p><p><strong>Conclusions: </strong>The interaction between FAP and FAP-targeted tracers differs between models, indicating the need for appropriate model selection and that comparing results across studies using different models is difficult.</p>","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"14 1","pages":"125"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13550-024-01191-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Fibroblast activation protein (FAP) is an attractive target for cancer theranostics. Although FAP-targeted nuclear imaging demonstrated promising clinical results, only sub-optimal results are reported for targeted radionuclide therapy (TRT). Preclinical research is crucial in selecting promising FAP-targeted radiopharmaceuticals and for obtaining an increased understanding of factors essential for FAP-TRT improvement. FAP is mainly expressed by cancer-associated fibroblasts in the tumor stroma and less on cancer cells themselves. Therefore, other (complex) factors impact FAP-TRT efficacy compared to currently clinically applied TRT strategies. For accurate evaluation of these aspects, selection of a representative preclinical model is important. Currently mainly human cancer cell lines transduced to (over)express FAP are applied, lacking clinical representation. It is unclear how these and more physiological FAP-expressing models compare to each other, and whether/how the model influences the study outcome. We aimed to address this by comparing FAP tracer behavior in FAP-transduced HT1080-huFAP and HEK293-huFAP cells, and endogenous FAP-expressing U-87 MG cancer cells and PS-1 pancreatic stellate cells. [111In]In-FAPI-46 and a fluorescent FAP-targeted tracer (RTX-1370S) were used to compare tracer binding/uptake and localization in vitro and ex vivo. Additionally, FAP expression was determined with RT-qPCR and anti-FAP IHC.
Results: Although FAP expression was highest in HEK293-huFAP cells and cell line derived xenografts, this did not result in the highest tracer uptake. [111In]In-FAPI-46 uptake was highest in HT1080-huFAP, closely followed by HEK293-huFAP, and a 6-10-fold lower uptake for U-87 MG and PS-1 cells. However, ex vivo U-87 MG xenografts only showed a 2-fold lower binding compared to HT1080-huFAP and HEK293-huFAP xenografts, mainly because the cell line attracts murine fibroblasts as demonstrated in our RT-qPCR and IHC studies.
Conclusions: The interaction between FAP and FAP-targeted tracers differs between models, indicating the need for appropriate model selection and that comparing results across studies using different models is difficult.
EJNMMI ResearchRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING&nb-
CiteScore
5.90
自引率
3.10%
发文量
72
审稿时长
13 weeks
期刊介绍:
EJNMMI Research publishes new basic, translational and clinical research in the field of nuclear medicine and molecular imaging. Regular features include original research articles, rapid communication of preliminary data on innovative research, interesting case reports, editorials, and letters to the editor. Educational articles on basic sciences, fundamental aspects and controversy related to pre-clinical and clinical research or ethical aspects of research are also welcome. Timely reviews provide updates on current applications, issues in imaging research and translational aspects of nuclear medicine and molecular imaging technologies.
The main emphasis is placed on the development of targeted imaging with radiopharmaceuticals within the broader context of molecular probes to enhance understanding and characterisation of the complex biological processes underlying disease and to develop, test and guide new treatment modalities, including radionuclide therapy.