{"title":"Robust Automated Truncation Point Selection for Molecular Simulations.","authors":"Finlay Clark, Daniel J Cole, Julien Michel","doi":"10.1021/acs.jctc.4c01359","DOIUrl":null,"url":null,"abstract":"<p><p>Quantities calculated from molecular simulations are often subject to an initial bias due to unrepresentative starting configurations. Initial data are usually discarded to reduce bias. Chodera's method for automated truncation point selection [J. Chem. Theory Comput. 2016, 12, 4, 1799-1805] is popular but has not been thoroughly assessed. We reformulate White's marginal standard error rule to provide a spectrum of truncation point selection heuristics that differ in their treatment of autocorrelation. These include a method effectively equivalent to Chodera's. We test these methods on ensembles of synthetic time series modeled on free energy change estimates from long absolute binding free energy calculations. Methods that more thoroughly account for autocorrelation often show late and variable truncation times, while methods that less thoroughly account for autocorrelation often show early truncation, relative to the optimal truncation point. This increases variance and bias, respectively. We recommend a method that achieves robust performance across our test sets by balancing these two extremes. None of the methods reliably detected insufficient sampling. All heuristics tested are implemented in the open-source Python package RED (github.com/fjclark/red).</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"88-101"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01359","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantities calculated from molecular simulations are often subject to an initial bias due to unrepresentative starting configurations. Initial data are usually discarded to reduce bias. Chodera's method for automated truncation point selection [J. Chem. Theory Comput. 2016, 12, 4, 1799-1805] is popular but has not been thoroughly assessed. We reformulate White's marginal standard error rule to provide a spectrum of truncation point selection heuristics that differ in their treatment of autocorrelation. These include a method effectively equivalent to Chodera's. We test these methods on ensembles of synthetic time series modeled on free energy change estimates from long absolute binding free energy calculations. Methods that more thoroughly account for autocorrelation often show late and variable truncation times, while methods that less thoroughly account for autocorrelation often show early truncation, relative to the optimal truncation point. This increases variance and bias, respectively. We recommend a method that achieves robust performance across our test sets by balancing these two extremes. None of the methods reliably detected insufficient sampling. All heuristics tested are implemented in the open-source Python package RED (github.com/fjclark/red).
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.