Rahul Karmakar, Nayana Venkatareddy, Himanshu, Michele Valsecchi, Prabal K Maiti, Srikanth Sastry, Sanat K Kumar, Tarak K Patra
{"title":"Computer simulations of entropic cohesion in reversibly crosslinked polymers.","authors":"Rahul Karmakar, Nayana Venkatareddy, Himanshu, Michele Valsecchi, Prabal K Maiti, Srikanth Sastry, Sanat K Kumar, Tarak K Patra","doi":"10.1039/d4sm01161a","DOIUrl":null,"url":null,"abstract":"<p><p>Reversibly crosslinked polymer networks - polymer networks that can undergo bond association and dissociation reactions - rearrange their structures while maintaining their overall integrity, thus resulting in unique properties such as self-healing, reprocessability, shape memory and adaptability. Here, we show that the introduction of crosslinks, whether reversible or permanent, directly impacts the equilibrium polymer density and hence the material's surface tension. For a limiting case where the bonds are the same size as the polymer chain bonds, simulations, Flory hypotheses and thermodynamic calculations show that the crosslinks induce an increased entropic cohesion in the liquid. These findings implicate density as a key variable in polymers with (dynamic) crosslinkers, one that can be used to facilely tune their properties.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01161a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reversibly crosslinked polymer networks - polymer networks that can undergo bond association and dissociation reactions - rearrange their structures while maintaining their overall integrity, thus resulting in unique properties such as self-healing, reprocessability, shape memory and adaptability. Here, we show that the introduction of crosslinks, whether reversible or permanent, directly impacts the equilibrium polymer density and hence the material's surface tension. For a limiting case where the bonds are the same size as the polymer chain bonds, simulations, Flory hypotheses and thermodynamic calculations show that the crosslinks induce an increased entropic cohesion in the liquid. These findings implicate density as a key variable in polymers with (dynamic) crosslinkers, one that can be used to facilely tune their properties.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.