Yusmiati Liau, Annabel Whibley, Amy M Hill, Bhanupratap R Vanga, Meeghan Pither-Joyce, Elena Hilario, Sarah Bailey, Susan J Thomson, Darrell Lizamore
{"title":"Low-pass nanopore sequencing for measurement of global methylation levels in plants.","authors":"Yusmiati Liau, Annabel Whibley, Amy M Hill, Bhanupratap R Vanga, Meeghan Pither-Joyce, Elena Hilario, Sarah Bailey, Susan J Thomson, Darrell Lizamore","doi":"10.1186/s12864-024-11145-w","DOIUrl":null,"url":null,"abstract":"<p><p>Nanopore sequencing enables detection of DNA methylation at the same time as identification of canonical sequence. A recent study validated low-pass nanopore sequencing to accurately estimate global methylation levels in vertebrates with sequencing coverage as low as 0.01x. We investigated the applicability of this approach to plants by testing three plant species and analysed the effect of technical and biological parameters on estimate precision and accuracy. Our results indicate that higher coverage (0.1x) is required to achieve accuracy in assessing plant global methylation comparable to that in vertebrates. Shorter read length and a closer sequence match between sample and reference genome improved measurement accuracy. Application of this method in Vitis vinifera showed consistent global methylation levels across different leaf sizes, and different sample preservation and DNA extraction methods, whereas different varieties and tissue types did exhibit methylation differences. Similarly, distinct methylation patterns were observed in different genomic features. Our findings suggest the suitability of this method as a low-cost screening tool for validation of experimental parameters, developmental time courses, and to assess methylation status for different modification types and sequence contexts at the level of whole genome or for abundant genomic features such as transposable elements.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1235"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-11145-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanopore sequencing enables detection of DNA methylation at the same time as identification of canonical sequence. A recent study validated low-pass nanopore sequencing to accurately estimate global methylation levels in vertebrates with sequencing coverage as low as 0.01x. We investigated the applicability of this approach to plants by testing three plant species and analysed the effect of technical and biological parameters on estimate precision and accuracy. Our results indicate that higher coverage (0.1x) is required to achieve accuracy in assessing plant global methylation comparable to that in vertebrates. Shorter read length and a closer sequence match between sample and reference genome improved measurement accuracy. Application of this method in Vitis vinifera showed consistent global methylation levels across different leaf sizes, and different sample preservation and DNA extraction methods, whereas different varieties and tissue types did exhibit methylation differences. Similarly, distinct methylation patterns were observed in different genomic features. Our findings suggest the suitability of this method as a low-cost screening tool for validation of experimental parameters, developmental time courses, and to assess methylation status for different modification types and sequence contexts at the level of whole genome or for abundant genomic features such as transposable elements.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.