Early detection of high blood pressure from natural speech sounds with graph diffusion network

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2025-02-01 DOI:10.1016/j.compbiomed.2024.109591
Haydar Ankışhan , Haydar Celik , Haluk Ulucanlar , Bülent Mustafa Yenigün
{"title":"Early detection of high blood pressure from natural speech sounds with graph diffusion network","authors":"Haydar Ankışhan ,&nbsp;Haydar Celik ,&nbsp;Haluk Ulucanlar ,&nbsp;Bülent Mustafa Yenigün","doi":"10.1016/j.compbiomed.2024.109591","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an innovative approach to cuffless blood pressure prediction by integrating speech and demographic features. With a focus on non-invasive monitoring, especially in remote regions, our model harnesses speech signals and demographic data to accurately estimate blood pressure. We found a strong correlation between our predictive model and early-stage high blood pressure, highlighting its potential for early detection. Central to our investigation is the Graph Diffusion Network (GDN) model, achieving exceptional performance with an R<sup>2</sup> score of 0.96 and a Pearson correlation coefficient (PCC) of 0.98. In early-stage hypertension detection, the GDN model achieved an F1-Score of 0.8735 ± 0.10 and accuracy of 0.8896 ± 0.11. Additionally, without considering demographic features, the model still performed well, with an R<sup>2</sup> of 0.740 and PCC of 0.764 when used alone. These results emphasize the value of combining speech and demographic features, offering a promising, non-invasive solution for blood pressure monitoring.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"Article 109591"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524016767","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative approach to cuffless blood pressure prediction by integrating speech and demographic features. With a focus on non-invasive monitoring, especially in remote regions, our model harnesses speech signals and demographic data to accurately estimate blood pressure. We found a strong correlation between our predictive model and early-stage high blood pressure, highlighting its potential for early detection. Central to our investigation is the Graph Diffusion Network (GDN) model, achieving exceptional performance with an R2 score of 0.96 and a Pearson correlation coefficient (PCC) of 0.98. In early-stage hypertension detection, the GDN model achieved an F1-Score of 0.8735 ± 0.10 and accuracy of 0.8896 ± 0.11. Additionally, without considering demographic features, the model still performed well, with an R2 of 0.740 and PCC of 0.764 when used alone. These results emphasize the value of combining speech and demographic features, offering a promising, non-invasive solution for blood pressure monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图扩散网络的自然语音高血压早期检测。
本研究提出了一种创新的方法,通过整合语音和人口特征来预测血压。专注于非侵入性监测,特别是在偏远地区,我们的模型利用语音信号和人口统计数据来准确估计血压。我们发现我们的预测模型与早期高血压之间存在很强的相关性,这突出了早期发现高血压的潜力。我们研究的核心是图扩散网络(GDN)模型,该模型的R2得分为0.96,Pearson相关系数(PCC)为0.98,表现优异。在早期高血压检测中,GDN模型的F1-Score为0.8735±0.10,准确率为0.8896±0.11。此外,在不考虑人口统计学特征的情况下,该模型仍然表现良好,单独使用时的R2为0.740,PCC为0.764。这些结果强调了结合语音和人口特征的价值,为血压监测提供了一个有前途的、非侵入性的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Two-stage CNN-based framework for leukocytes classification Harnessing network pharmacology and in silico drug discovery to uncover new targets and therapeutics for Alzheimer's disease Computer-aided design of imatinib derivatives: Overcoming drug-resistance in chronic myeloid leukemia MRI morphological features combined with apparent diffusion coefficient can predict brain invasion in meningioma In-silico exploring pathway and mechanism-based therapeutics for allergic rhinitis: Network pharmacology, molecular docking, ADMET, quantum chemistry and machine learning based QSAR approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1