Xianbin Tian, Yanni Liu, Kun Zhu, Haoran An, Jie Feng, Linqi Zhang, Jing-Ren Zhang
{"title":"Natural antibodies to polysaccharide capsules enable Kupffer cells to capture invading bacteria in the liver sinusoids.","authors":"Xianbin Tian, Yanni Liu, Kun Zhu, Haoran An, Jie Feng, Linqi Zhang, Jing-Ren Zhang","doi":"10.1084/jem.20240735","DOIUrl":null,"url":null,"abstract":"<p><p>The interception of blood-borne bacteria in the liver defines the outcomes of invasive bacterial infections, but the mechanisms of this antibacterial immunity are not fully understood. This study shows that natural antibodies (nAbs) to capsules enable liver macrophage Kupffer cells (KCs) to rapidly capture and kill blood-borne encapsulated bacteria in mice. Affinity pulldown with serotype-10A capsular polysaccharides (CPS10A) of Streptococcus pneumoniae (Spn10A) led to the identification of CPS10A-binding nAbs in serum. The CPS10A-antibody interaction enabled KCs to capture Spn10A bacteria from the bloodstream, in part through complement receptors on KCs. The nAbs were found to recognize the β1-6-linked galactose branch of CPS10A and similar moieties of serotype-39 S. pneumoniae and serotype-K50 Klebsiella pneumoniae capsules. More importantly, the nAbs empowered KCs to capture serotype-39 S. pneumoniae and serotype-K50 K. pneumoniae in the liver. Collectively, our data have revealed a highly effective immune function of nAb against encapsulated bacteria and emphasize the concept of treating septic encapsulated bacterial diseases with monoclonal antibodies.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 2","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20240735","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The interception of blood-borne bacteria in the liver defines the outcomes of invasive bacterial infections, but the mechanisms of this antibacterial immunity are not fully understood. This study shows that natural antibodies (nAbs) to capsules enable liver macrophage Kupffer cells (KCs) to rapidly capture and kill blood-borne encapsulated bacteria in mice. Affinity pulldown with serotype-10A capsular polysaccharides (CPS10A) of Streptococcus pneumoniae (Spn10A) led to the identification of CPS10A-binding nAbs in serum. The CPS10A-antibody interaction enabled KCs to capture Spn10A bacteria from the bloodstream, in part through complement receptors on KCs. The nAbs were found to recognize the β1-6-linked galactose branch of CPS10A and similar moieties of serotype-39 S. pneumoniae and serotype-K50 Klebsiella pneumoniae capsules. More importantly, the nAbs empowered KCs to capture serotype-39 S. pneumoniae and serotype-K50 K. pneumoniae in the liver. Collectively, our data have revealed a highly effective immune function of nAb against encapsulated bacteria and emphasize the concept of treating septic encapsulated bacterial diseases with monoclonal antibodies.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.