Ye Zhang, Xinjing Yang, Javaid Akhter Bhat, Yaohua Zhang, Moran Bu, Beifang Zhao, Suxin Yang
{"title":"Identification of superior haplotypes and candidate gene for seed size-related traits in soybean (<i>Glycine max</i> L.).","authors":"Ye Zhang, Xinjing Yang, Javaid Akhter Bhat, Yaohua Zhang, Moran Bu, Beifang Zhao, Suxin Yang","doi":"10.1007/s11032-024-01525-1","DOIUrl":null,"url":null,"abstract":"<p><p>Seed size is an economically important trait that directly determines the seed yield in soybean. In the current investigation, we used an integrated strategy of linkage mapping, association mapping, haplotype analysis and candidate gene analysis to determine the genetic makeup of four seed size-related traits viz., 100-seed weight (HSW), seed area (SA), seed length (SL), and seed width (SW) in soybean. Linkage mapping identified a total of 23 quantitative trait loci (QTL) associated with four seed size-related traits in the F<sub>2</sub> population; among them, 17 were detected as novel QTLs, whereas the remaining six viz., <i>qHSW3-1</i>, <i>qHSW4-1</i>, <i>qHSW18-1</i>, <i>qHSW19-1</i>, <i>qSL4-1</i> and <i>qSW6-1</i> have been previously identified. Six out of 23 QTLs were major possessing phenotypic variation explained (PVE) ≥ 10%. Besides, the four QTL Clusters/QTL Hotspots harboring multiple QTLs for different seed size-related traits were identified on Chr.04, Chr.16, Chr.19 and Chr.20. Genome-wide association study (GWAS) identified a total of 62 SNPs significantly associated with the four seed size-related traits. Interestingly, the QTL viz., <i>qHSW18-1</i> was identified by both linkage mapping and GWAS, and was regarded as the most stable loci regulating HSW in soybean. <i>In-silico</i>, sequencing and qRT-PCR analysis identified the <i>Glyma.18G242400</i> as the most potential candidate gene underlying the <i>qHSW18-1</i> for regulating HSW. Moreover, three haplotype blocks viz., Hap2, Hap6A and Hap6B were identified for the SW trait, and one haplotype was identified within the <i>Glyma.18G242400</i> for the HSW. These four haplotypes harbor three to seven haplotype alleles across the association mapping panel of 350 soybean accessions, regulating the seed size from lowest to highest through intermediate phenotypes. Hence, the outcome of the current investigation can be utilized as a potential genetic and genomic resource for breeding the improved seed size in soybean.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01525-1.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 1","pages":"3"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01525-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Seed size is an economically important trait that directly determines the seed yield in soybean. In the current investigation, we used an integrated strategy of linkage mapping, association mapping, haplotype analysis and candidate gene analysis to determine the genetic makeup of four seed size-related traits viz., 100-seed weight (HSW), seed area (SA), seed length (SL), and seed width (SW) in soybean. Linkage mapping identified a total of 23 quantitative trait loci (QTL) associated with four seed size-related traits in the F2 population; among them, 17 were detected as novel QTLs, whereas the remaining six viz., qHSW3-1, qHSW4-1, qHSW18-1, qHSW19-1, qSL4-1 and qSW6-1 have been previously identified. Six out of 23 QTLs were major possessing phenotypic variation explained (PVE) ≥ 10%. Besides, the four QTL Clusters/QTL Hotspots harboring multiple QTLs for different seed size-related traits were identified on Chr.04, Chr.16, Chr.19 and Chr.20. Genome-wide association study (GWAS) identified a total of 62 SNPs significantly associated with the four seed size-related traits. Interestingly, the QTL viz., qHSW18-1 was identified by both linkage mapping and GWAS, and was regarded as the most stable loci regulating HSW in soybean. In-silico, sequencing and qRT-PCR analysis identified the Glyma.18G242400 as the most potential candidate gene underlying the qHSW18-1 for regulating HSW. Moreover, three haplotype blocks viz., Hap2, Hap6A and Hap6B were identified for the SW trait, and one haplotype was identified within the Glyma.18G242400 for the HSW. These four haplotypes harbor three to seven haplotype alleles across the association mapping panel of 350 soybean accessions, regulating the seed size from lowest to highest through intermediate phenotypes. Hence, the outcome of the current investigation can be utilized as a potential genetic and genomic resource for breeding the improved seed size in soybean.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01525-1.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.