Artificial intelligence in anesthesiology: a bibliometric analysis.

IF 2 3区 医学 Q2 ANESTHESIOLOGY Perioperative Medicine Pub Date : 2024-12-23 DOI:10.1186/s13741-024-00480-x
Bi-Hua Xie, Ting-Ting Li, Feng-Ting Ma, Qi-Jun Li, Qiu-Xia Xiao, Liu-Lin Xiong, Fei Liu
{"title":"Artificial intelligence in anesthesiology: a bibliometric analysis.","authors":"Bi-Hua Xie, Ting-Ting Li, Feng-Ting Ma, Qi-Jun Li, Qiu-Xia Xiao, Liu-Lin Xiong, Fei Liu","doi":"10.1186/s13741-024-00480-x","DOIUrl":null,"url":null,"abstract":"<p><p>The application of artificial intelligence (AI) in anesthesiology has become increasingly widespread. However, no previous study has analyzed this field from the bibliometric analysis dimension. The objective of this paper was to assess the global research trends in AI in anesthesiology using bibliometric software. Literatures relevant to AI and anesthesiology were retrieved from the Web of Science until 10 April 2024 and were visualized and analyzed using Excel, CiteSpace, and VOSviewer. After screening, 491 studies were included in the final bibliometric analysis. The growth rate of publications, countries, institutions, authors, journals, literature co-citations, and keyword co-occurrences was computed. The number of publications increased annually since 2018, with the most significant contributions from the USA, China, and England. The top 3 institutions were Yuan Ze University, National Taiwan University, and Brunel University London. The top three journals were Anesthesia & Analgesia, BMC Anesthesiology, and the British Journal of Anaesthesia. The researches on the application of AI in predicting hypotension have been extensive and represented a hotspot and frontier. In terms of keyword co-occurrence cluster analysis, keywords were categorized into four clusters: ultrasound-guided regional anesthesia, postoperative pain and airway management, prediction, depth of anesthesia (DoA), and intraoperative drug infusion. This analysis provides a systematic analysis on the literature regarding the AI-related research in the field of anesthesiology, which may help researchers and anesthesiologists better understand the research trend of anesthesia-related AI.</p>","PeriodicalId":19764,"journal":{"name":"Perioperative Medicine","volume":"13 1","pages":"121"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perioperative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13741-024-00480-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The application of artificial intelligence (AI) in anesthesiology has become increasingly widespread. However, no previous study has analyzed this field from the bibliometric analysis dimension. The objective of this paper was to assess the global research trends in AI in anesthesiology using bibliometric software. Literatures relevant to AI and anesthesiology were retrieved from the Web of Science until 10 April 2024 and were visualized and analyzed using Excel, CiteSpace, and VOSviewer. After screening, 491 studies were included in the final bibliometric analysis. The growth rate of publications, countries, institutions, authors, journals, literature co-citations, and keyword co-occurrences was computed. The number of publications increased annually since 2018, with the most significant contributions from the USA, China, and England. The top 3 institutions were Yuan Ze University, National Taiwan University, and Brunel University London. The top three journals were Anesthesia & Analgesia, BMC Anesthesiology, and the British Journal of Anaesthesia. The researches on the application of AI in predicting hypotension have been extensive and represented a hotspot and frontier. In terms of keyword co-occurrence cluster analysis, keywords were categorized into four clusters: ultrasound-guided regional anesthesia, postoperative pain and airway management, prediction, depth of anesthesia (DoA), and intraoperative drug infusion. This analysis provides a systematic analysis on the literature regarding the AI-related research in the field of anesthesiology, which may help researchers and anesthesiologists better understand the research trend of anesthesia-related AI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
3.80%
发文量
55
审稿时长
10 weeks
期刊最新文献
Artificial intelligence in anesthesiology: a bibliometric analysis. The relationship between preoperative anemia and length of hospital stay among patients undergoing orthopedic surgery at a teaching hospital in Ethiopia: a retrospective cohort study. Excess hospital length of stay and extra cost attributable to primary prolonged postoperative ileus in open alimentary tract surgery: a multicenter cohort analysis in China. Investigating the effects of pressure support ventilation and positive end-expiratory pressure during extubation on respiratory system complications. The current situation and associated factors of preoperative frailty in elderly patients undergoing abdominal surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1