Positive Chemotactic Flasklike Colloidal Motors Propelled by Rotary FoF1-ATP Synthases.

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2024-12-23 eCollection Date: 2024-01-01 DOI:10.34133/research.0566
Yue Li, Yingjie Wu, Qiang He
{"title":"Positive Chemotactic Flasklike Colloidal Motors Propelled by Rotary F<sub>o</sub>F<sub>1</sub>-ATP Synthases.","authors":"Yue Li, Yingjie Wu, Qiang He","doi":"10.34133/research.0566","DOIUrl":null,"url":null,"abstract":"<p><p>Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary F<sub>o</sub>F<sub>1</sub>-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose. The as-synthesized particles enable the incorporation of thylakoid vesicles into the cavity, ensuring a geometric asymmetric nanoarchitecture. The chemical gradient in the neck channel across flasklike colloidal motors facilitates autonomous movement at a speed of 1.19 μm/s in a ΔpH value of 4. Computer simulations reveal the self-actuated flasklike colloidal motors driven by self-diffusiophoretic force. These flasklike colloidal motors display positive directional motion along an adenosine diphosphate (ADP) concentration gradient during adenosine triphosphate (ATP) synthesis. The positive chemotaxis is ascribed that the phosphorylation reaction occurring inside colloidal motors generates 2 distinct phoretic torques at the bottom and the opening owing to the diffusion of ADP, thereby a continuous reorientation motion. Such a biophysical strategy that nanosized rotary protein molecular motors propel the directional movement of a flasklike colloidal motor holds promise for designing new types of biomedical swimming nanobots.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0566"},"PeriodicalIF":11.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0566","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FoF1-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose. The as-synthesized particles enable the incorporation of thylakoid vesicles into the cavity, ensuring a geometric asymmetric nanoarchitecture. The chemical gradient in the neck channel across flasklike colloidal motors facilitates autonomous movement at a speed of 1.19 μm/s in a ΔpH value of 4. Computer simulations reveal the self-actuated flasklike colloidal motors driven by self-diffusiophoretic force. These flasklike colloidal motors display positive directional motion along an adenosine diphosphate (ADP) concentration gradient during adenosine triphosphate (ATP) synthesis. The positive chemotaxis is ascribed that the phosphorylation reaction occurring inside colloidal motors generates 2 distinct phoretic torques at the bottom and the opening owing to the diffusion of ADP, thereby a continuous reorientation motion. Such a biophysical strategy that nanosized rotary protein molecular motors propel the directional movement of a flasklike colloidal motor holds promise for designing new types of biomedical swimming nanobots.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
Positive Chemotactic Flasklike Colloidal Motors Propelled by Rotary FoF1-ATP Synthases. Vascular Smooth Muscle Cells Transdifferentiate into Chondrocyte-Like Cells and Facilitate Meniscal Fibrocartilage Regeneration. Conformal Metamaterials with Active Tunability and Self-Adaptivity for Magnetic Resonance Imaging. Photoelectrochemical High-Value-Added Chemical Production with Improved Selectivity. Can Thermal Nonreciprocity Help Radiative Cooling?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1