Comparative in vitro toxicity of compositionally distinct thermal spray particulates in human bronchial cells.

Q1 Environmental Science Toxicology Reports Pub Date : 2024-12-04 eCollection Date: 2024-12-01 DOI:10.1016/j.toxrep.2024.101851
E S Burns, R E Harner, V Kodali, A A Afshari, J M Antonini, S S Leonard
{"title":"Comparative in vitro toxicity of compositionally distinct thermal spray particulates in human bronchial cells.","authors":"E S Burns, R E Harner, V Kodali, A A Afshari, J M Antonini, S S Leonard","doi":"10.1016/j.toxrep.2024.101851","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal spray, in general, is a process that involves forcing a melted substance, such as metal or ceramic in the form of wire or powder, onto the surface of a targeted object to enhance its desired surface properties. In this paper, the melted substance is metal wire generated by an electric arc and forcibly coated on a rotary iron substrate using compressed air. This thermal process is referred to as double-wire arc thermal spray. The particles generated through these methods fall within the nanometer to micrometer agglomerate size range. There is concern regarding potential human health outcomes as these particles exhibit a similarity in particle morphology to welding fumes. Thermal spray wires with zinc (PMET540), iron and chromium (PMET731), and nickel (PMET885) as primary metal compositions were used to generate particulate via an electric arc wire thermal spray generator for exposure to human bronchial cells (BEAS-2B) to examine comparative toxicity ranging from 0 to 200 µg/mL. Resulting cellular viability was assessed through live cell counts, and percent cytotoxicity was measured as a function of LDH release. Oxidative stress, genotoxicity, and alteration in total antioxidant capacity were evaluated through DNA damage (COMET analysis) and antioxidant concentration at 0, 3.125, 25, and 100 µg/mL. Protein markers for endothelin-1 (ET-1), interleukin-6 (IL-6), and interleukin-8 (IL-8) were also assessed to determine inflammation and endothelial alteration.</p><p><strong>Results: </strong>indicate modulation of oxidative stress response in a material and dose dependent manner. PMET540 exhibited the greatest cytotoxic effect between wires and across doses. DNA damage and antioxidant concentration induced by PMET540 were significantly higher than other wires at higher doses (DNA damage increased at 25 and 100 µg/mL; Antioxidant concentration increased at 100 µg/mL). However, ET-1 concentration significantly increased only after application of 100 µg/mL PMET885. IL-6 and IL-8 were most highly expressed in BEAS2B culture after 25 µg/mL exposure to PMET540 (99.4 % Zn). This data suggests that metal composition of thermal spray wires dictates the diverse response in human bronchial cells.</p>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"13 ","pages":"101851"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.toxrep.2024.101851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal spray, in general, is a process that involves forcing a melted substance, such as metal or ceramic in the form of wire or powder, onto the surface of a targeted object to enhance its desired surface properties. In this paper, the melted substance is metal wire generated by an electric arc and forcibly coated on a rotary iron substrate using compressed air. This thermal process is referred to as double-wire arc thermal spray. The particles generated through these methods fall within the nanometer to micrometer agglomerate size range. There is concern regarding potential human health outcomes as these particles exhibit a similarity in particle morphology to welding fumes. Thermal spray wires with zinc (PMET540), iron and chromium (PMET731), and nickel (PMET885) as primary metal compositions were used to generate particulate via an electric arc wire thermal spray generator for exposure to human bronchial cells (BEAS-2B) to examine comparative toxicity ranging from 0 to 200 µg/mL. Resulting cellular viability was assessed through live cell counts, and percent cytotoxicity was measured as a function of LDH release. Oxidative stress, genotoxicity, and alteration in total antioxidant capacity were evaluated through DNA damage (COMET analysis) and antioxidant concentration at 0, 3.125, 25, and 100 µg/mL. Protein markers for endothelin-1 (ET-1), interleukin-6 (IL-6), and interleukin-8 (IL-8) were also assessed to determine inflammation and endothelial alteration.

Results: indicate modulation of oxidative stress response in a material and dose dependent manner. PMET540 exhibited the greatest cytotoxic effect between wires and across doses. DNA damage and antioxidant concentration induced by PMET540 were significantly higher than other wires at higher doses (DNA damage increased at 25 and 100 µg/mL; Antioxidant concentration increased at 100 µg/mL). However, ET-1 concentration significantly increased only after application of 100 µg/mL PMET885. IL-6 and IL-8 were most highly expressed in BEAS2B culture after 25 µg/mL exposure to PMET540 (99.4 % Zn). This data suggests that metal composition of thermal spray wires dictates the diverse response in human bronchial cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology Reports
Toxicology Reports Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
7.60
自引率
0.00%
发文量
228
审稿时长
11 weeks
期刊最新文献
High-throughput non-homogenous 3D polycaprolactone scaffold for cancer cell and cancer-associated fibroblast mini-tumors to evaluate drug treatment response. Screening of bioactive components in Ferula assafo dried oleo-gum resin and assessment of its protective function against cadmium-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Effects of dietary acrylamide on kidney and liver health: Molecular mechanisms and pharmacological implications. Fenofibrate ameliorated atorvastatin and piperine-induced ROS mediated reproductive toxicity in male Wistar rats. Interleukin-10 levels in azithromycin-induced cardiac damage and the protective role of combined selenium and vitamin E treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1