Xi Cao, Tianqi Liu, Xiang Li, Yong Huang, Qin Nie, Ming Li
{"title":"Full-scale simultaneous partial nitrification, anammox, and denitrification for the efficient treatment of carbon and nitrogen in low-C/N wastewater.","authors":"Xi Cao, Tianqi Liu, Xiang Li, Yong Huang, Qin Nie, Ming Li","doi":"10.1016/j.wroa.2024.100288","DOIUrl":null,"url":null,"abstract":"<p><p>A full-scale simultaneous partial nitrification, anaerobic ammonia oxidation (anammox), and denitrification (SNAD) reactor was initiated to address the problem of high energy consumption for the treatment of low C/N wastewater. The SNAD system achieved a nitrogen removal rate of 0.9 kg/(m<sup>3</sup>·d) at an influent NH₄<sup>+</sup>-N concentration of 500 mg/L after 450 days of stable operation. Partial nitrification was achieved by maintaining free ammonia levels at 0.8 ± 0.3 mg/L and dissolved oxygen concentrations between 0.3 mg/L and 1.2 mg/L, which resulted in synergistic nitrogen removal, with anammox contributing 61 % and denitrification contributing 39 %. Microbiological analyses indicated that the dominant microorganisms were <i>Candidatus Brocadia, Thauera, Denitratisoma</i>, and <i>Nitrosomonas</i>. In conclusion, study provides a solid foundation for the broader implementation of the SNAD process in wastewater treatment systems.</p>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"26 ","pages":"100288"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wroa.2024.100288","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
A full-scale simultaneous partial nitrification, anaerobic ammonia oxidation (anammox), and denitrification (SNAD) reactor was initiated to address the problem of high energy consumption for the treatment of low C/N wastewater. The SNAD system achieved a nitrogen removal rate of 0.9 kg/(m3·d) at an influent NH₄+-N concentration of 500 mg/L after 450 days of stable operation. Partial nitrification was achieved by maintaining free ammonia levels at 0.8 ± 0.3 mg/L and dissolved oxygen concentrations between 0.3 mg/L and 1.2 mg/L, which resulted in synergistic nitrogen removal, with anammox contributing 61 % and denitrification contributing 39 %. Microbiological analyses indicated that the dominant microorganisms were Candidatus Brocadia, Thauera, Denitratisoma, and Nitrosomonas. In conclusion, study provides a solid foundation for the broader implementation of the SNAD process in wastewater treatment systems.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.