Design and development of vaginal wall mimicking poly(ϵ-caprolactone) based nanofibrous prosthetic mesh for pelvic organ prolapse: evaluation of biocompatibility and antibacterial ability.

Preethi Arul Murugan, Jayesh Bellare
{"title":"Design and development of vaginal wall mimicking poly(<i>ϵ</i>-caprolactone) based nanofibrous prosthetic mesh for pelvic organ prolapse: evaluation of biocompatibility and antibacterial ability.","authors":"Preethi Arul Murugan, Jayesh Bellare","doi":"10.1088/1748-605X/ada2d0","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical non-conformance of conventionally used transvaginal non-degradable meshes has led to complications such as organ perforation, dyspareunia caused by mesh stiffness and stress shielding. In this study, we have solved the dire need to mimic the mechanical properties of the vaginal wall by designing and developing a soft and elastic mesh made of polycaprolactone (PCL), citric acid modified polyethylene glycol (PEGC) and zinc oxide (ZnO) prepared through electrospinning and tested<i>in vitro</i>and<i>in vivo</i>. The mesh containing 90:10:0.1 of PCL, PEGC and ZnO (PEGC-15 0.1ZnO mesh) conforms to the mechanical properties of the vaginal wall of the pelvic floor, has a burst strength of ∼35 N even after gamma-sterilization and 28 d of degradation in<i>in vitro</i>.<i>In vitro</i>studies using adipose-derived stem cells revealed that the PCL-PEGC-15 0.1ZnO meshes were biocompatible and supported higher collagen production than commercial mesh.<i>An in vitro</i>bacterial adhesion study showed a 2-log reduction compared to commercially available mesh for prolapse treatment. Initial biocompatibility assessment in a rabbit model also showed that the PCL-PEGC-15 0.1ZnO mesh is biocompatible and supports fibrosis throughout the mesh. The softness and flexibility of the PCL-PEGC-15 0.1ZnO mesh based on<i>in vitro</i>trials and initial<i>in vivo</i>trials show that the mesh has a potential clinical impact for pelvic floor repair treatment.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ada2d0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical non-conformance of conventionally used transvaginal non-degradable meshes has led to complications such as organ perforation, dyspareunia caused by mesh stiffness and stress shielding. In this study, we have solved the dire need to mimic the mechanical properties of the vaginal wall by designing and developing a soft and elastic mesh made of polycaprolactone (PCL), citric acid modified polyethylene glycol (PEGC) and zinc oxide (ZnO) prepared through electrospinning and testedin vitroandin vivo. The mesh containing 90:10:0.1 of PCL, PEGC and ZnO (PEGC-15 0.1ZnO mesh) conforms to the mechanical properties of the vaginal wall of the pelvic floor, has a burst strength of ∼35 N even after gamma-sterilization and 28 d of degradation inin vitro.In vitrostudies using adipose-derived stem cells revealed that the PCL-PEGC-15 0.1ZnO meshes were biocompatible and supported higher collagen production than commercial mesh.An in vitrobacterial adhesion study showed a 2-log reduction compared to commercially available mesh for prolapse treatment. Initial biocompatibility assessment in a rabbit model also showed that the PCL-PEGC-15 0.1ZnO mesh is biocompatible and supports fibrosis throughout the mesh. The softness and flexibility of the PCL-PEGC-15 0.1ZnO mesh based onin vitrotrials and initialin vivotrials show that the mesh has a potential clinical impact for pelvic floor repair treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和开发用于盆腔器官脱垂的仿阴道壁聚(ε-己内酯)纳米纤维假体网片:生物相容性和抗菌能力评估。
常规使用的经阴道不可降解网片的机械不符合导致了诸如器官穿孔、由网片刚度引起的性交困难和应力屏蔽等并发症。本研究通过静电纺丝制备聚己内酯(PCL)、柠檬酸改性聚乙二醇(PEGC)和氧化锌(ZnO),设计和开发了一种柔软而有弹性的网状物,解决了模拟阴道壁力学性能的迫切需求,并进行了体外和体内测试。含有PCL、PEGC和ZnO比例为90:10:10 .1的补片(PEGC-15 0.1ZnO补片)符合骨盆底阴道壁的力学性能,经γ杀菌和体外降解28天后,其破裂强度仍为~35 N。使用脂肪干细胞的体外研究表明,PCL-PEGC-15 0.1ZnO网状物具有生物相容性,并且比商业网状物支持更高的胶原生成。体外细菌粘附研究显示,与市售的用于脱垂治疗的网状物相比,减少了2倍。兔模型的初步生物相容性评估也显示PCL-PEGC-15 0.1ZnO补片具有生物相容性,并支持整个补片的纤维化。PCL-PEGC-15 0.1ZnO补片的柔软性和柔韧性经体外试验和初步体内试验证明,在盆底修复治疗中具有潜在的临床影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-performance affinity peptide sensor for prostate specific antigen detection. Ficus caricaleaves extract-loaded PLGA nanoparticles: preparation, characterization, andin vitroanticancer activity on TFK-1 cell line. 3D printed polycaprolactone/poly (L-lactide-co-ϵ-caprolactone) composite ureteral stent with biodegradable and antibacterial properties. Analgesic effect of microneedle with 3-acetylaconitine for neuropathic pain. Exploring blood oxygenation through photocatalytic activity using microwave assisted hydrothermally crystalized TiO2 nanotubes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1