NEDD4L inhibits epithelial-mesenchymal transition in gastric cancer by mediating BICC1 ubiquitination.

Shaoyi Duan, Zhiliang Tian, Rong Hu, Heng Long
{"title":"NEDD4L inhibits epithelial-mesenchymal transition in gastric cancer by mediating BICC1 ubiquitination.","authors":"Shaoyi Duan, Zhiliang Tian, Rong Hu, Heng Long","doi":"10.1002/kjm2.12924","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial-mesenchymal transition (EMT) is a critical stage in the metastasis of gastric cancer (GC). Further clarification of the EMT process in GC is still needed. This study examined the effects of the NEDD4L/BICC1 axis on GC proliferation and the EMT process. Thirty GC patients were enrolled in this study to assess the expression of BICC1 and NEDD4L in tumor samples. A xenograft tumor model in mice was created to investigate BICC1's function in vivo. The proliferation, migration, and invasion of GC cells were evaluated using colony formation, transwell, and wound healing assays. Western blot determined the expression levels of EMT-associated proteins. Co-immunoprecipitation (Co-IP) elucidated the mechanism by which NEDD4L regulates BICC1. BICC1 was found to be overexpressed in tumors. Additionally, BICC1 knockdown inhibited the growth of GC cells in vivo and prevented their migration, invasion, proliferation, and EMT. Furthermore, BICC1 activated the PI3K/AKT pathway, which facilitated cancer progression. Tumor tissues and GC cells exhibited low expression levels of NEDD4L. Conversely, NEDD4L overexpression promoted the ubiquitination and degradation of BICC1 protein, thereby inhibiting GC cell proliferation, migration, invasion, and EMT processes. Our study demonstrated that NEDD4L acts as a tumor suppressor in GC, while BICC1 functions as a pro-tumorigenic factor. The NEDD4L/BICC1 axis plays a significant role in the metastasis and progression of GC.</p>","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":" ","pages":"e12924"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kaohsiung journal of medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/kjm2.12924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epithelial-mesenchymal transition (EMT) is a critical stage in the metastasis of gastric cancer (GC). Further clarification of the EMT process in GC is still needed. This study examined the effects of the NEDD4L/BICC1 axis on GC proliferation and the EMT process. Thirty GC patients were enrolled in this study to assess the expression of BICC1 and NEDD4L in tumor samples. A xenograft tumor model in mice was created to investigate BICC1's function in vivo. The proliferation, migration, and invasion of GC cells were evaluated using colony formation, transwell, and wound healing assays. Western blot determined the expression levels of EMT-associated proteins. Co-immunoprecipitation (Co-IP) elucidated the mechanism by which NEDD4L regulates BICC1. BICC1 was found to be overexpressed in tumors. Additionally, BICC1 knockdown inhibited the growth of GC cells in vivo and prevented their migration, invasion, proliferation, and EMT. Furthermore, BICC1 activated the PI3K/AKT pathway, which facilitated cancer progression. Tumor tissues and GC cells exhibited low expression levels of NEDD4L. Conversely, NEDD4L overexpression promoted the ubiquitination and degradation of BICC1 protein, thereby inhibiting GC cell proliferation, migration, invasion, and EMT processes. Our study demonstrated that NEDD4L acts as a tumor suppressor in GC, while BICC1 functions as a pro-tumorigenic factor. The NEDD4L/BICC1 axis plays a significant role in the metastasis and progression of GC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activation of PPARγ regulates M1/M2 macrophage polarization and attenuates dextran sulfate sodium salt-induced inflammatory bowel disease via the STAT-1/STAT-6 pathway. Curcumin-induced exosomal FTO from bone marrow stem cells alleviates sepsis-associated acute kidney injury by modulating the m6A methylation of OXSR1. Safety of transarterial chemoembolization on renal function in combined hepatocellular carcinoma and chronic kidney disease patients. A study of specific immunoglobulin G4 expression in allergic rhinitis and its value in assessing efficacy and in predicting prognosis of sublingual immunotherapy. Narrative review of neoadjuvant therapy in patients with locally advanced colon cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1