Lingfeng Luo, Wenbo Wu, Jeremy M G Taylor, Jian Kang, Michael J Kleinsasser, Kevin He
{"title":"surtvep: An R package for estimating time-varying effects.","authors":"Lingfeng Luo, Wenbo Wu, Jeremy M G Taylor, Jian Kang, Michael J Kleinsasser, Kevin He","doi":"10.21105/joss.05688","DOIUrl":null,"url":null,"abstract":"<p><p>The surtvep package is an open-source software designed for estimating time-varying effects in survival analysis using the Cox non-proportional hazards model in R. With the rapid increase in large-scale time-to-event data from national disease registries, detecting and accounting for time-varying effects in medical studies have become crucial. Current software solutions often face computational issues such as memory limitations when handling large datasets. Furthermore, modeling time-varying effects for time-to-event data can be challenging due to small at-risk sets and numerical instability near the end of the follow-up period. surtvep addresses these challenges by implementing a computationally efficient Kronecker product-based proximal algorithm, supporting both unstratified and stratified models. The package also incorporates P-spline and smoothing spline penalties to improve estimation (Eilers & Marx, 1996). Cross-validation and information criteria are available to determine the optimal tuning parameters. Parallel computation is enabled to further enhance computational efficiency. A variety of operating characteristics are provided, including estimated time-varying effects, confidence intervals, hypothesis testing, and estimated hazard functions and survival probabilities. The surtvep package thus offers a comprehensive and flexible solution to analyzing large-scale time-to-event data with dynamic effect trajectories.</p>","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"9 98","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of open source software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/joss.05688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The surtvep package is an open-source software designed for estimating time-varying effects in survival analysis using the Cox non-proportional hazards model in R. With the rapid increase in large-scale time-to-event data from national disease registries, detecting and accounting for time-varying effects in medical studies have become crucial. Current software solutions often face computational issues such as memory limitations when handling large datasets. Furthermore, modeling time-varying effects for time-to-event data can be challenging due to small at-risk sets and numerical instability near the end of the follow-up period. surtvep addresses these challenges by implementing a computationally efficient Kronecker product-based proximal algorithm, supporting both unstratified and stratified models. The package also incorporates P-spline and smoothing spline penalties to improve estimation (Eilers & Marx, 1996). Cross-validation and information criteria are available to determine the optimal tuning parameters. Parallel computation is enabled to further enhance computational efficiency. A variety of operating characteristics are provided, including estimated time-varying effects, confidence intervals, hypothesis testing, and estimated hazard functions and survival probabilities. The surtvep package thus offers a comprehensive and flexible solution to analyzing large-scale time-to-event data with dynamic effect trajectories.