In-Situ Growth of Metallocluster Inside Heterometal-Organic Cage to Switch Electron Transfer for Targeted CO2 Photoreduction

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-25 DOI:10.1002/anie.202423018
Dr. Yang Yang, Dr. Man Dong, Dr. Qi Wu, Prof. Dr. Chao Qin, Prof. Dr. Weichao Chen, Prof. Dr. Yun Geng, Dr. Shuangxue Wu, Prof. Dr. Chunyi Sun, Prof. Dr. Kuizhan Shao, Prof. Dr. Zhongmin Su, Prof. Dr. Xinlong Wang
{"title":"In-Situ Growth of Metallocluster Inside Heterometal-Organic Cage to Switch Electron Transfer for Targeted CO2 Photoreduction","authors":"Dr. Yang Yang,&nbsp;Dr. Man Dong,&nbsp;Dr. Qi Wu,&nbsp;Prof. Dr. Chao Qin,&nbsp;Prof. Dr. Weichao Chen,&nbsp;Prof. Dr. Yun Geng,&nbsp;Dr. Shuangxue Wu,&nbsp;Prof. Dr. Chunyi Sun,&nbsp;Prof. Dr. Kuizhan Shao,&nbsp;Prof. Dr. Zhongmin Su,&nbsp;Prof. Dr. Xinlong Wang","doi":"10.1002/anie.202423018","DOIUrl":null,"url":null,"abstract":"<p>Construction of metal-organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metallocluster-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metallocluster-based heterometallic MOC (<b>Cu<sub>3</sub>VMOP</b>) constructed of [Cu<sub>3</sub>OPz<sub>3</sub>]<sup>+</sup> and [V<sub>6</sub>O<sub>6</sub>(OCH<sub>3</sub>)<sub>9</sub>(SO<sub>4</sub>)(CO<sub>2</sub>)<sub>3</sub>]<sup>2−</sup> clusters was obtained by one-pot method. In addition, Cu<sub>4</sub>I<sub>4</sub> was generated in situ in the cage to form <b>Cu<sub>4</sub>I<sub>4</sub>@Cu<sub>3</sub>VMOP</b> by the coordination-driven hierarchical self-assembly strategy. As catalysts for CO<sub>2</sub> reduction, <b>Cu<sub>3</sub>VMOP</b> produces HCOOH and CH<sub>3</sub>COOH as the main reduction product with yield of CH<sub>3</sub>COOH up to 0.9 mmol g<sup>−1</sup>, ranking among the highest value of reported materials, whereas <b>Cu<sub>4</sub>I<sub>4</sub>@Cu<sub>3</sub>VMOP</b> exhibited targeted CO<sub>2</sub>-to-HCOOH conversion with 100 % formic acid selectivity and the yield outperforms that of <b>Cu<sub>3</sub>VMOP</b> by 5 fold. Theoretical calculations and femtosecond time-resolved transient absorption reveal that endogenous Cu<sub>4</sub>I<sub>4</sub> not only regulates orbital arrangements and enhances localized electron states to generate a long-lived charge-separated state, but also raises *CO coupling energy barrier, resulting in the targeted conversion of CO<sub>2</sub> to formic acid.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 12","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202423018","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Construction of metal-organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metallocluster-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metallocluster-based heterometallic MOC (Cu3VMOP) constructed of [Cu3OPz3]+ and [V6O6(OCH3)9(SO4)(CO2)3]2− clusters was obtained by one-pot method. In addition, Cu4I4 was generated in situ in the cage to form Cu4I4@Cu3VMOP by the coordination-driven hierarchical self-assembly strategy. As catalysts for CO2 reduction, Cu3VMOP produces HCOOH and CH3COOH as the main reduction product with yield of CH3COOH up to 0.9 mmol g−1, ranking among the highest value of reported materials, whereas Cu4I4@Cu3VMOP exhibited targeted CO2-to-HCOOH conversion with 100 % formic acid selectivity and the yield outperforms that of Cu3VMOP by 5 fold. Theoretical calculations and femtosecond time-resolved transient absorption reveal that endogenous Cu4I4 not only regulates orbital arrangements and enhances localized electron states to generate a long-lived charge-separated state, but also raises *CO coupling energy barrier, resulting in the targeted conversion of CO2 to formic acid.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异质金属笼内金属团簇原位生长对CO2光还原靶电子转移的影响
构建内部修饰的金属有机笼(MOCs)是一种很有前途的途径,可以构建酶样腔,并解开酶的高催化活性和选择性之谜。然而,目前的研究主要集中在单金属节点笼上,在基于金属簇的结构和金属簇的原位内生生成方面的研究很少。在硬-软酸-碱(HSAB)的基础上,采用一锅法制备了由[Cu3OPz3]+和[V6O6(OCH3)9(SO4)(CO2)3]2 -组成的基于金属团簇的异质金属MOC (Cu3VMOP)。此外,通过协调驱动的分层自组装策略,在笼中原位生成Cu4I4形成Cu4I4@Cu3VMOP。Cu3VMOP作为CO2还原催化剂,主要还原产物为HCOOH和CH3COOH, CH3COOH产率高达0.9 mmol g-1,是报道的材料中最高的,而Cu4I4@Cu3VMOP具有100%甲酸选择性的CO2- HCOOH定向转化,产率是Cu3VMOP的5倍。理论计算和飞秒时间分辨瞬态吸收表明,内源性Cu4I4不仅调节轨道排列,增强局域电子态,产生长寿命的电荷分离态,而且提高了*CO偶能势垒,导致CO2定向转化为甲酸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
N-Heterocyclic Carbene Monolayers on Nickel, Iron, and Steel by a Radical-to-Carbene Strategy. Amino Acid Platform for Poly(amino ester)s: Controlled Ring-Opening Polymerization, Complete Recyclability, and Tunable Polymerizability/Depolymerizability. Mesoporous Engineering of Single-Atom Catalyst for Industry-Level Electrocatalytic CO2 Reduction in Membrane Electrode Assemblies. Steering Pulsed Electrochemistry Selectivity Toward Singlet Oxygen via Dynamic Intermediate Management. Yb-Doped Cu-Based Catalyst Boosting Electrochemical CO2-to-C2+ Reduction Across pH Range at Ampere-Level Current Density.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1