Adiponectin deficiency prevents chronic colitis-associated colonic fibrosis via inhibiting CXCL13 production

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of Advanced Research Pub Date : 2024-12-24 DOI:10.1016/j.jare.2024.12.032
Haitao Xiao, Tianhang Xing, Miao Qiu, Guangtao Zhang, Gongli Yang, Wenke Chen, Die Hu, Deao Xue, Jiao Peng, Bin Du
{"title":"Adiponectin deficiency prevents chronic colitis-associated colonic fibrosis via inhibiting CXCL13 production","authors":"Haitao Xiao, Tianhang Xing, Miao Qiu, Guangtao Zhang, Gongli Yang, Wenke Chen, Die Hu, Deao Xue, Jiao Peng, Bin Du","doi":"10.1016/j.jare.2024.12.032","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Colonic fibrosis is a long-term complication of inflammatory bowel disease (IBD), often leading to functional impairment, intestinal obstruction, and surgery. Adiponectin (APN) is an adipokine derived from adipocytes that plays a pleiotropic role in fibrosis regulation, depending on tissue and cell type specific or disease context, but its role in colonic fibrosis remains unclear.<h3>Objective</h3>To explore the role and involved mechanism of APN in chronic colitis-associated colonic fibrosis.<h3>Methods</h3>Studies were performed in GEO database, colonic tissues of UC patients, dextran sulfate sodium (DSS)-induced colonic fibrosis in male wild-type (WT) and APN<sup>-/-</sup> mice, mouse L929 and human CCD-18Co fibroblasts treated with recombinant CXCL13 protein, and colonic fibrosis in WT mice infected with shRNA of CXCL13.<h3>Results</h3>APN was highly expressed in the colonic tissues of UC patients and positively correlated with the colonoscopy score and colonic fibrosis markers COL1A1 and COL3A1. APN deficiency significantly improved chronic colitis-induced colonic fibrosis in mice with down-regulating collagenase accumulation and expressions of TGF-β, α-SMA, COL1A1, COL3A1, and MMP-9 in colonic tissues. Transcriptomics showed that APN deficiency mainly affected cytokine-cytokine receptor interactions, especially CXCL13 signaling. Follow-up studies showed that APN deficiency significantly decreased the number of colonic F4/80<sup>+</sup>CD206<sup>+</sup>CXCL13<sup>+</sup> macrophages by weakening Akt phosphorylation. Additional experiments confirmed that CXCL13 notably increased the expressions of α-SMA and COL1A1 in mouse in mouse and human fibroblasts by activating p-Akt, p-p38, p-ERK, and p-JNK. Moreover, inhibiting CXCL13 with shRNA significantly ameliorated colonic fibrosis in mice with DSS-induced chronic colitis. Immunohistochemistry analysis revealed high expression of CXCL13 in the colon tissues of patients with UC, showing a positive correlation with APN, COL1A1, and COL3A1.<h3>Conclusion</h3>APN contributes to the progression of colonic fibrosis and can exacerbate this condition by regulating the secretion of CXCL13 in the colon, offering potential new perspectives on the pathophysiology of colonic fibrosis.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"132 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.12.032","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Colonic fibrosis is a long-term complication of inflammatory bowel disease (IBD), often leading to functional impairment, intestinal obstruction, and surgery. Adiponectin (APN) is an adipokine derived from adipocytes that plays a pleiotropic role in fibrosis regulation, depending on tissue and cell type specific or disease context, but its role in colonic fibrosis remains unclear.

Objective

To explore the role and involved mechanism of APN in chronic colitis-associated colonic fibrosis.

Methods

Studies were performed in GEO database, colonic tissues of UC patients, dextran sulfate sodium (DSS)-induced colonic fibrosis in male wild-type (WT) and APN-/- mice, mouse L929 and human CCD-18Co fibroblasts treated with recombinant CXCL13 protein, and colonic fibrosis in WT mice infected with shRNA of CXCL13.

Results

APN was highly expressed in the colonic tissues of UC patients and positively correlated with the colonoscopy score and colonic fibrosis markers COL1A1 and COL3A1. APN deficiency significantly improved chronic colitis-induced colonic fibrosis in mice with down-regulating collagenase accumulation and expressions of TGF-β, α-SMA, COL1A1, COL3A1, and MMP-9 in colonic tissues. Transcriptomics showed that APN deficiency mainly affected cytokine-cytokine receptor interactions, especially CXCL13 signaling. Follow-up studies showed that APN deficiency significantly decreased the number of colonic F4/80+CD206+CXCL13+ macrophages by weakening Akt phosphorylation. Additional experiments confirmed that CXCL13 notably increased the expressions of α-SMA and COL1A1 in mouse in mouse and human fibroblasts by activating p-Akt, p-p38, p-ERK, and p-JNK. Moreover, inhibiting CXCL13 with shRNA significantly ameliorated colonic fibrosis in mice with DSS-induced chronic colitis. Immunohistochemistry analysis revealed high expression of CXCL13 in the colon tissues of patients with UC, showing a positive correlation with APN, COL1A1, and COL3A1.

Conclusion

APN contributes to the progression of colonic fibrosis and can exacerbate this condition by regulating the secretion of CXCL13 in the colon, offering potential new perspectives on the pathophysiology of colonic fibrosis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
期刊最新文献
Non-destructive detection strategy of maize seed vigor based on seed phenotyping and the potential for accelerating breeding Evaluating current status of network pharmacology for herbal medicine focusing on identifying mechanisms and therapeutic effects Targeting APJ drives BNIP3-PINK1-PARKIN induced mitophagy and improves systemic inflammatory bone loss Adiponectin deficiency prevents chronic colitis-associated colonic fibrosis via inhibiting CXCL13 production Loss of glomerular aldolase B in diabetic nephropathy promotes renal fibrosis via activating Akt/GSK/β-catenin axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1