Kinetics and Oligomer Products of the Multiphase Reactions of Hydroxyacetone with Atmospheric Amines, Ammonium Sulfate, and Cloud Processing.

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Earth and Space Chemistry Pub Date : 2024-12-06 eCollection Date: 2024-12-19 DOI:10.1021/acsearthspacechem.4c00237
David O De Haan, Lelia Nahid Hawkins, Elyse A Pennington, Hannah G Welsh, Alyssa A Rodriguez, Michael A Symons, Alyssa D Andretta, Michael A Rafla, Chen Le, Audrey C De Haan, Tianqu Cui, Jason D Surratt, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin
{"title":"Kinetics and Oligomer Products of the Multiphase Reactions of Hydroxyacetone with Atmospheric Amines, Ammonium Sulfate, and Cloud Processing.","authors":"David O De Haan, Lelia Nahid Hawkins, Elyse A Pennington, Hannah G Welsh, Alyssa A Rodriguez, Michael A Symons, Alyssa D Andretta, Michael A Rafla, Chen Le, Audrey C De Haan, Tianqu Cui, Jason D Surratt, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin","doi":"10.1021/acsearthspacechem.4c00237","DOIUrl":null,"url":null,"abstract":"<p><p>Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.05 m<sup>2</sup> g<sup>-1</sup>). However, rapid changes observed in aerosol volume and gas-phase species concentrations suggest that the lack of BrC was not due to slow reactivity. Filter-based UHPLC/(+)ESI-HR-QTOFMS analysis revealed that the SOA became heavily oligomerized, with average molecular masses of ∼400 amu in all cases. Oligomers contained, on average, 3.9 HA, 1.5 ammonia, and 1.6 other small aldehydes, including, in descending order of abundance, acetaldehyde, glycolaldehyde, glyoxal, and methylglyoxal. PTR-ToF-MS confirmed the production of these aldehydes. We identify C<sub>17</sub>H<sub>26</sub>O<sub>5</sub>, C<sub>10</sub>H<sub>22</sub>O<sub>9</sub>, C<sub>15</sub>H<sub>27</sub>NO<sub>7</sub>, C<sub>17</sub>H<sub>23</sub>NO<sub>5</sub>, and C<sub>18</sub>H<sub>32</sub>N<sub>2</sub>O<sub>9</sub> as potential tracer ions for HA oligomers. We hypothesize that efficient oligomerization without substantial BrC production is due to negligible N-heterocycle (e.g., imidazoles/pyrazines) formation. While HA photooxidation is unlikely a significant atmospheric BrC source, it may contribute significantly to aqueous SOA formation.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"8 12","pages":"2574-2586"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664653/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsearthspacechem.4c00237","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.05 m2 g-1). However, rapid changes observed in aerosol volume and gas-phase species concentrations suggest that the lack of BrC was not due to slow reactivity. Filter-based UHPLC/(+)ESI-HR-QTOFMS analysis revealed that the SOA became heavily oligomerized, with average molecular masses of ∼400 amu in all cases. Oligomers contained, on average, 3.9 HA, 1.5 ammonia, and 1.6 other small aldehydes, including, in descending order of abundance, acetaldehyde, glycolaldehyde, glyoxal, and methylglyoxal. PTR-ToF-MS confirmed the production of these aldehydes. We identify C17H26O5, C10H22O9, C15H27NO7, C17H23NO5, and C18H32N2O9 as potential tracer ions for HA oligomers. We hypothesize that efficient oligomerization without substantial BrC production is due to negligible N-heterocycle (e.g., imidazoles/pyrazines) formation. While HA photooxidation is unlikely a significant atmospheric BrC source, it may contribute significantly to aqueous SOA formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Kinetics and Oligomer Products of the Multiphase Reactions of Hydroxyacetone with Atmospheric Amines, Ammonium Sulfate, and Cloud Processing Kinetics and Oligomer Products of the Multiphase Reactions of Hydroxyacetone with Atmospheric Amines, Ammonium Sulfate, and Cloud Processing. Laboratory Studies on the Influence of Hydrogen on Titan-like Photochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1