Shaping resilience: The critical role of plant response regulators in salinity stress.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. General subjects Pub Date : 2024-12-22 DOI:10.1016/j.bbagen.2024.130749
Priyanka S Joshi, Sneh L Singla Pareek, Ashwani Pareek
{"title":"Shaping resilience: The critical role of plant response regulators in salinity stress.","authors":"Priyanka S Joshi, Sneh L Singla Pareek, Ashwani Pareek","doi":"10.1016/j.bbagen.2024.130749","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Salinity stress affects plant growth, development, biomass, yield, as well as their survival. A series of signaling cascade is activated to cope the deleterious effect of salinity stress. Cytokinins are known for their regulatory roles from cell growth and expansion to abiotic stress signaling. Two component system (TCS) are important multistep phosphorelay signal transduction machinery converging cytokinin, ethylene and light signal transduction pathways together. Plant TCS comprises of histidine kinases, phosho-transfer proteins and response regulators. Histidine kinases perceive the signal and relay it to response regulator via histidine containing phosphor-transfer proteins.</p><p><strong>Scope of review: </strong>Response regulators are one of the major and diverse component of TCS system which have been extensively studied for their role in plant growth, development and circadian rhythm. However, knowledge of their regulatory role in abiotic stress signaling is limited. This mini-review specifically focus on role of response regulators in salinity stress signaling.</p><p><strong>Major conclusion: </strong>Response regulators is the divergent node of TCS machinery, where cross-talks with other stress-mediated, phytohormone-mediated, as well as, light-mediated signaling pathways ensues. Studies from past few years have established central role of response regulators in salinity stress, however, the detailed mechanism of their actions need to be studied further.</p><p><strong>General significance: </strong>Response regulators act as both negative as well as positive regulator of salinity and cytokinin signaling, making it an excellent target to increase crop yield as well as stress tolerance capabilities.</p>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":" ","pages":"130749"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbagen.2024.130749","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Salinity stress affects plant growth, development, biomass, yield, as well as their survival. A series of signaling cascade is activated to cope the deleterious effect of salinity stress. Cytokinins are known for their regulatory roles from cell growth and expansion to abiotic stress signaling. Two component system (TCS) are important multistep phosphorelay signal transduction machinery converging cytokinin, ethylene and light signal transduction pathways together. Plant TCS comprises of histidine kinases, phosho-transfer proteins and response regulators. Histidine kinases perceive the signal and relay it to response regulator via histidine containing phosphor-transfer proteins.

Scope of review: Response regulators are one of the major and diverse component of TCS system which have been extensively studied for their role in plant growth, development and circadian rhythm. However, knowledge of their regulatory role in abiotic stress signaling is limited. This mini-review specifically focus on role of response regulators in salinity stress signaling.

Major conclusion: Response regulators is the divergent node of TCS machinery, where cross-talks with other stress-mediated, phytohormone-mediated, as well as, light-mediated signaling pathways ensues. Studies from past few years have established central role of response regulators in salinity stress, however, the detailed mechanism of their actions need to be studied further.

General significance: Response regulators act as both negative as well as positive regulator of salinity and cytokinin signaling, making it an excellent target to increase crop yield as well as stress tolerance capabilities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochimica et biophysica acta. General subjects
Biochimica et biophysica acta. General subjects 生物-生化与分子生物学
CiteScore
6.40
自引率
0.00%
发文量
139
审稿时长
30 days
期刊介绍: BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.
期刊最新文献
BMY 7378, a selective α1D-adrenoceptor antagonist, is a new angiotensin converting enzyme inhibitor: In silico, in vitro and in vivo approach. Molecular mechanism of action of tetracycline-loaded calcium phosphate nanoparticle to kill multi-drug resistant bacteria. Computational profiling and pharmacokinetic modelling of Febuxostat: Evaluating its potential as a therapeutic agent for diabetic wound healing. Functions of unique middle loop and C-terminal tail in GnT-III activity and secretion. TOE1 deadenylase inhibits gastric cancer cell proliferation by regulating cell cycle progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1