Mechanistic insights into SIRT7 and EZH2 regulation of cisplatin resistance in bladder cancer cells.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2024-12-24 DOI:10.1038/s41419-024-07321-1
Yudong Cao, Shuo Wang, Jinchao Ma, Mengping Long, Xiuli Ma, Xiao Yang, Yongpeng Ji, Xingxing Tang, Jia Liu, Chen Lin, Yong Yang, Peng Du
{"title":"Mechanistic insights into SIRT7 and EZH2 regulation of cisplatin resistance in bladder cancer cells.","authors":"Yudong Cao, Shuo Wang, Jinchao Ma, Mengping Long, Xiuli Ma, Xiao Yang, Yongpeng Ji, Xingxing Tang, Jia Liu, Chen Lin, Yong Yang, Peng Du","doi":"10.1038/s41419-024-07321-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin (CDDP) resistance has been established to significantly impact Bladder Cancer (BCa) therapy. On the other hand, the crucial regulatory involvement of SIRT7 and EZH2 in bladder cancer development is well known. Herein, the collaborative regulatory roles and underlying mechanisms of SIRT7 and EZH2 in CDDP resistance in bladder cancer were explored. Immunohistochemistry (IHC) and Western Blot (WB) analyses were used to assess the expression levels of SIRT7/EZH2 and RND3 in bladder cancer tissues, normal ureteral epithelial cells, and bladder cancer cell lines. Furthermore, the impact of various treatments on of UMUC3 cell proliferation and CDDP sensitivity was assessed using CCK-8 assays, plate cloning assays, and flow cytometry analysis. Additionally, the levels of H3K18ac and H3K27me<sup>3</sup> at the promoter region of the RND3 gene, the binding abilities of SIRT7 and EZH2, and the succinylation level of the EZH2 protein were examined using ChIP-qPCR assays, CO-IP assays, and IP assays, respectively. Moreover, in vivo experiments were conducted using a bladder cancer mouse model created by subcutaneously injecting UMUC3 cells into Balb/c nude mice. According to the results, SIRT7 correlated with the sensitivity of bladder cancer cells to both the platinum-based chemotherapy and CDDP. Specifically, SIRT7 could bind to the RND3 promoter, downregulating H3K18ac and RND3, ultimately leading to an increased CDDP sensitivity in UMUC3 cells. Furthermore, EZH2 siRNA could decrease H3K27me<sup>3</sup> levels in the RND3 promoter, upregulating RND3. Overall, in the promoter region of the RND3 gene, SIRT7 upregulated H3K27me<sup>3</sup> and EZH2 downregulated H3K18ac, leading to a decline in RND3 expression and CDDP sensitivity in bladder cancer cells. Additionally, SIRT7 reduced the succinylation of the EZH2 protein resulting in an EZH2-mediated RND3 downregulation. Therefore, targeting SIRT7 and EZH2 could be a viable approach to enhancing CDDP efficacy in bladder cancer treatment.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"931"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07321-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cisplatin (CDDP) resistance has been established to significantly impact Bladder Cancer (BCa) therapy. On the other hand, the crucial regulatory involvement of SIRT7 and EZH2 in bladder cancer development is well known. Herein, the collaborative regulatory roles and underlying mechanisms of SIRT7 and EZH2 in CDDP resistance in bladder cancer were explored. Immunohistochemistry (IHC) and Western Blot (WB) analyses were used to assess the expression levels of SIRT7/EZH2 and RND3 in bladder cancer tissues, normal ureteral epithelial cells, and bladder cancer cell lines. Furthermore, the impact of various treatments on of UMUC3 cell proliferation and CDDP sensitivity was assessed using CCK-8 assays, plate cloning assays, and flow cytometry analysis. Additionally, the levels of H3K18ac and H3K27me3 at the promoter region of the RND3 gene, the binding abilities of SIRT7 and EZH2, and the succinylation level of the EZH2 protein were examined using ChIP-qPCR assays, CO-IP assays, and IP assays, respectively. Moreover, in vivo experiments were conducted using a bladder cancer mouse model created by subcutaneously injecting UMUC3 cells into Balb/c nude mice. According to the results, SIRT7 correlated with the sensitivity of bladder cancer cells to both the platinum-based chemotherapy and CDDP. Specifically, SIRT7 could bind to the RND3 promoter, downregulating H3K18ac and RND3, ultimately leading to an increased CDDP sensitivity in UMUC3 cells. Furthermore, EZH2 siRNA could decrease H3K27me3 levels in the RND3 promoter, upregulating RND3. Overall, in the promoter region of the RND3 gene, SIRT7 upregulated H3K27me3 and EZH2 downregulated H3K18ac, leading to a decline in RND3 expression and CDDP sensitivity in bladder cancer cells. Additionally, SIRT7 reduced the succinylation of the EZH2 protein resulting in an EZH2-mediated RND3 downregulation. Therefore, targeting SIRT7 and EZH2 could be a viable approach to enhancing CDDP efficacy in bladder cancer treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIRT7和EZH2调控膀胱癌细胞顺铂耐药的机制
顺铂(CDDP)耐药已被证实对膀胱癌(BCa)治疗有显著影响。另一方面,SIRT7和EZH2在膀胱癌发展中的重要调控作用是众所周知的。本文探讨了SIRT7和EZH2在膀胱癌CDDP耐药中的协同调控作用及其潜在机制。采用免疫组织化学(IHC)和Western Blot (WB)分析SIRT7/EZH2和RND3在膀胱癌组织、正常输尿管上皮细胞和膀胱癌细胞系中的表达水平。此外,通过CCK-8、平板克隆和流式细胞术分析,评估不同处理对UMUC3细胞增殖和CDDP敏感性的影响。此外,分别采用ChIP-qPCR、CO-IP和IP检测RND3基因启动子区域的H3K18ac和H3K27me3水平、SIRT7和EZH2的结合能力以及EZH2蛋白的琥珀酰化水平。此外,通过Balb/c裸鼠皮下注射UMUC3细胞建立膀胱癌小鼠模型,进行了体内实验。结果显示,SIRT7与膀胱癌细胞对铂类化疗和CDDP的敏感性相关。具体来说,SIRT7可以结合RND3启动子,下调H3K18ac和RND3,最终导致UMUC3细胞中CDDP敏感性增加。此外,EZH2 siRNA可以降低RND3启动子中的H3K27me3水平,上调RND3。综上所述,在RND3基因的启动子区域,SIRT7上调H3K27me3, EZH2下调H3K18ac,导致膀胱癌细胞中RND3表达和CDDP敏感性下降。此外,SIRT7降低了EZH2蛋白的琥珀酰化,导致EZH2介导的RND3下调。因此,靶向SIRT7和EZH2可能是提高CDDP治疗膀胱癌疗效的可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
hydrogen peroxide
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
MAPK4 inhibits the early aberrant activation of B cells in rheumatoid arthritis by promoting the IRF4-SHIP1 signaling pathway. ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. Ferroptosis triggers mitochondrial fragmentation via Drp1 activation. Positive feedback loop involving AMPK and CLYBL acetylation links metabolic rewiring and inflammatory responses. RNAi-based ALOX15B silencing augments keratinocyte inflammation in vitro via EGFR/STAT1/JAK1 signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1