Marie E. Esper, Caroline E. Brun, Alexander Y. T. Lin, Peter Feige, Marie J. Catenacci, Marie‐Claude Sincennes, Morten Ritso, Michael A. Rudnicki
{"title":"Intrinsic Muscle Stem Cell Dysfunction Contributes to Impaired Regeneration in the mdx Mouse","authors":"Marie E. Esper, Caroline E. Brun, Alexander Y. T. Lin, Peter Feige, Marie J. Catenacci, Marie‐Claude Sincennes, Morten Ritso, Michael A. Rudnicki","doi":"10.1002/jcsm.13682","DOIUrl":null,"url":null,"abstract":"BackgroundDuchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin‐deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.MethodsUsing the <jats:italic>mdx</jats:italic> mouse model of DMD, we performed an in‐depth characterization of disease progression and MuSC function in dystrophin‐deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays. We examined the architectural and functional changes in <jats:italic>mdx</jats:italic> skeletal muscle from 13 and 52 weeks of age and following acute cardiotoxin (CTX) injury. We also studied MuSC dynamics and function under homeostatic conditions, during regeneration post‐acute injury, and following engraftment using a combination of histological and transcriptomic analyses.ResultsDystrophin‐deficient skeletal muscle undergoes progressive changes with age and delayed regeneration in response to acute injury. Muscle hypertrophy, deposition of collagen and an increase in small myofibres occur with age in the <jats:italic>tibialis anterior</jats:italic> (TA) and diaphragm muscles in <jats:italic>mdx</jats:italic> mice. Dystrophic <jats:italic>mdx</jats:italic> mouse TA muscles become hypertrophic with age, whereas diaphragm atrophy is evident in 1‐year‐old <jats:italic>mdx</jats:italic> mice. Maximum tetanic force is comparable between genotypes in the TA, but maximum specific force is reduced by up to 38% between 13 and 52 weeks in the <jats:italic>mdx</jats:italic> mouse. Following acute injury, myofibre hyperplasia and hypotrophy and delayed recovery of maximum tetanic force occur in the <jats:italic>mdx</jats:italic> TA. We also find defective MuSC polarity and reduced numbers of myocytes in <jats:italic>mdx</jats:italic> muscle following acute injury. We observed a 50% and 30% decrease in PAX7<jats:sup>+</jats:sup> and MYOG<jats:sup>+</jats:sup> cells, respectively, at 5 days post CTX injury (5 dpi) in the <jats:italic>mdx</jats:italic> TA. A similar decrease in <jats:italic>mdx</jats:italic> progenitor cell proportion is observed by single cell RNA sequencing of myogenic cells at 5 dpi. The global expression of commitment‐related genes is also reduced at 5 dpi. We find a 46% reduction in polarized PARD3 in <jats:italic>mdx</jats:italic> MuSCs. Finally, <jats:italic>mdx</jats:italic> MuSCs exhibit elevated PAX7<jats:sup>+</jats:sup> cell engraftment with significantly fewer donor‐derived myonuclei in regenerated myofibres.ConclusionsOur study provides evidence that dystrophin deficiency in MuSCs and myofibres together contributes to progression of DMD. Ongoing muscle damage stimulates MuSC activation; however, aberrant intrinsic MuSC polarity and stem cell commitment deficits due to the loss of dystrophin impair muscle regeneration. Our study provides in vivo validation that dystrophin‐deficient MuSCs undergo fewer asymmetric cell divisions, instead favouring symmetric expansion.","PeriodicalId":186,"journal":{"name":"Journal of Cachexia, Sarcopenia and Muscle","volume":"83 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia, Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcsm.13682","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundDuchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin‐deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.MethodsUsing the mdx mouse model of DMD, we performed an in‐depth characterization of disease progression and MuSC function in dystrophin‐deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays. We examined the architectural and functional changes in mdx skeletal muscle from 13 and 52 weeks of age and following acute cardiotoxin (CTX) injury. We also studied MuSC dynamics and function under homeostatic conditions, during regeneration post‐acute injury, and following engraftment using a combination of histological and transcriptomic analyses.ResultsDystrophin‐deficient skeletal muscle undergoes progressive changes with age and delayed regeneration in response to acute injury. Muscle hypertrophy, deposition of collagen and an increase in small myofibres occur with age in the tibialis anterior (TA) and diaphragm muscles in mdx mice. Dystrophic mdx mouse TA muscles become hypertrophic with age, whereas diaphragm atrophy is evident in 1‐year‐old mdx mice. Maximum tetanic force is comparable between genotypes in the TA, but maximum specific force is reduced by up to 38% between 13 and 52 weeks in the mdx mouse. Following acute injury, myofibre hyperplasia and hypotrophy and delayed recovery of maximum tetanic force occur in the mdx TA. We also find defective MuSC polarity and reduced numbers of myocytes in mdx muscle following acute injury. We observed a 50% and 30% decrease in PAX7+ and MYOG+ cells, respectively, at 5 days post CTX injury (5 dpi) in the mdx TA. A similar decrease in mdx progenitor cell proportion is observed by single cell RNA sequencing of myogenic cells at 5 dpi. The global expression of commitment‐related genes is also reduced at 5 dpi. We find a 46% reduction in polarized PARD3 in mdx MuSCs. Finally, mdx MuSCs exhibit elevated PAX7+ cell engraftment with significantly fewer donor‐derived myonuclei in regenerated myofibres.ConclusionsOur study provides evidence that dystrophin deficiency in MuSCs and myofibres together contributes to progression of DMD. Ongoing muscle damage stimulates MuSC activation; however, aberrant intrinsic MuSC polarity and stem cell commitment deficits due to the loss of dystrophin impair muscle regeneration. Our study provides in vivo validation that dystrophin‐deficient MuSCs undergo fewer asymmetric cell divisions, instead favouring symmetric expansion.
期刊介绍:
The Journal of Cachexia, Sarcopenia, and Muscle is a prestigious, peer-reviewed international publication committed to disseminating research and clinical insights pertaining to cachexia, sarcopenia, body composition, and the physiological and pathophysiological alterations occurring throughout the lifespan and in various illnesses across the spectrum of life sciences. This journal serves as a valuable resource for physicians, biochemists, biologists, dieticians, pharmacologists, and students alike.