{"title":"Exploring Homogeneous and Heterogeneous Consistent Label Associations for Unsupervised Visible-Infrared Person ReID","authors":"Lingfeng He, De Cheng, Nannan Wang, Xinbo Gao","doi":"10.1007/s11263-024-02322-1","DOIUrl":null,"url":null,"abstract":"<p>Unsupervised visible-infrared person re-identification (USL-VI-ReID) endeavors to retrieve pedestrian images of the same identity from different modalities without annotations. While prior work focuses on establishing cross-modality pseudo-label associations to bridge the modality-gap, they ignore maintaining the instance-level homogeneous and heterogeneous consistency between the feature space and the pseudo-label space, resulting in coarse associations. In response, we introduce a Modality-Unified Label Transfer (MULT) module that simultaneously accounts for both homogeneous and heterogeneous fine-grained instance-level structures, yielding high-quality cross-modality label associations. It models both homogeneous and heterogeneous affinities, leveraging them to quantify the inconsistency between the pseudo-label space and the feature space, subsequently minimizing it. The proposed MULT ensures that the generated pseudo-labels maintain alignment across modalities while upholding structural consistency within intra-modality. Additionally, a straightforward plug-and-play Online Cross-memory Label Refinement (OCLR) module is proposed to further mitigate the side effects of noisy pseudo-labels while simultaneously aligning different modalities, coupled with an Alternative Modality-Invariant Representation Learning (AMIRL) framework. Experiments demonstrate that our proposed method outperforms existing state-of-the-art USL-VI-ReID methods, highlighting the superiority of our MULT in comparison to other cross-modality association methods. Code is available at https://github.com/FranklinLingfeng/code_for_MULT.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"25 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02322-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Unsupervised visible-infrared person re-identification (USL-VI-ReID) endeavors to retrieve pedestrian images of the same identity from different modalities without annotations. While prior work focuses on establishing cross-modality pseudo-label associations to bridge the modality-gap, they ignore maintaining the instance-level homogeneous and heterogeneous consistency between the feature space and the pseudo-label space, resulting in coarse associations. In response, we introduce a Modality-Unified Label Transfer (MULT) module that simultaneously accounts for both homogeneous and heterogeneous fine-grained instance-level structures, yielding high-quality cross-modality label associations. It models both homogeneous and heterogeneous affinities, leveraging them to quantify the inconsistency between the pseudo-label space and the feature space, subsequently minimizing it. The proposed MULT ensures that the generated pseudo-labels maintain alignment across modalities while upholding structural consistency within intra-modality. Additionally, a straightforward plug-and-play Online Cross-memory Label Refinement (OCLR) module is proposed to further mitigate the side effects of noisy pseudo-labels while simultaneously aligning different modalities, coupled with an Alternative Modality-Invariant Representation Learning (AMIRL) framework. Experiments demonstrate that our proposed method outperforms existing state-of-the-art USL-VI-ReID methods, highlighting the superiority of our MULT in comparison to other cross-modality association methods. Code is available at https://github.com/FranklinLingfeng/code_for_MULT.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.