Seed tuber microbiome can predict growth potential of potato varieties

IF 20.5 1区 生物学 Q1 MICROBIOLOGY Nature Microbiology Pub Date : 2024-12-27 DOI:10.1038/s41564-024-01872-x
Yang Song, Elisa Atza, Juan J. Sánchez-Gil, Doretta Akkermans, Ronnie de Jonge, Peter G. H. de Rooij, David Kakembo, Peter A. H. M. Bakker, Corné M. J. Pieterse, Neil V. Budko, Roeland L. Berendsen
{"title":"Seed tuber microbiome can predict growth potential of potato varieties","authors":"Yang Song, Elisa Atza, Juan J. Sánchez-Gil, Doretta Akkermans, Ronnie de Jonge, Peter G. H. de Rooij, David Kakembo, Peter A. H. M. Bakker, Corné M. J. Pieterse, Neil V. Budko, Roeland L. Berendsen","doi":"10.1038/s41564-024-01872-x","DOIUrl":null,"url":null,"abstract":"Potato vigour, the growth potential of seed potatoes, is a key agronomic trait that varies significantly across production fields due to factors such as genetic background and environmental conditions. Seed tuber microbiomes are thought to influence plant health and crop performance, yet the precise relationships between microbiome composition and potato vigour remain unclear. Here we conducted microbiome sequencing on seed tuber eyes and heel ends from 6 potato varieties grown in 240 fields. By using time-resolved drone imaging of three trial fields in the next season to track crop development, we were able to link microbiome composition with potato vigour. We used microbiome data at varying taxonomic resolutions to build random forest predictive models and found that amplicon sequence variants provided the highest predictive accuracy for potato vigour. The model revealed variety-specific relationships between the seed tuber microbiome and next season’s crop vigour in independent trial fields. With a coefficient of determination value of 0.69 for the best-performing variety, the model accurately predicted vigour in seed tubers from fields not previously included in the analysis. Moreover, the model identified key microbial indicators of vigour from which a Streptomyces, an Acinetobacter and a Cellvibrio amplicon sequence variant stood out as the most important contributors to the model’s accuracy. This study shows that seed potato vigour can be reliably predicted based on the microbiota associated with seed tuber eyes, potentially guiding future microbiome-informed breeding strategies. Time-resolved drone imaging of potato crop development and seed tuber microbiome data can be used to predict potato vigour, or growth potential, in next-season crops in trial fields.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"10 1","pages":"28-40"},"PeriodicalIF":20.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01872-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Potato vigour, the growth potential of seed potatoes, is a key agronomic trait that varies significantly across production fields due to factors such as genetic background and environmental conditions. Seed tuber microbiomes are thought to influence plant health and crop performance, yet the precise relationships between microbiome composition and potato vigour remain unclear. Here we conducted microbiome sequencing on seed tuber eyes and heel ends from 6 potato varieties grown in 240 fields. By using time-resolved drone imaging of three trial fields in the next season to track crop development, we were able to link microbiome composition with potato vigour. We used microbiome data at varying taxonomic resolutions to build random forest predictive models and found that amplicon sequence variants provided the highest predictive accuracy for potato vigour. The model revealed variety-specific relationships between the seed tuber microbiome and next season’s crop vigour in independent trial fields. With a coefficient of determination value of 0.69 for the best-performing variety, the model accurately predicted vigour in seed tubers from fields not previously included in the analysis. Moreover, the model identified key microbial indicators of vigour from which a Streptomyces, an Acinetobacter and a Cellvibrio amplicon sequence variant stood out as the most important contributors to the model’s accuracy. This study shows that seed potato vigour can be reliably predicted based on the microbiota associated with seed tuber eyes, potentially guiding future microbiome-informed breeding strategies. Time-resolved drone imaging of potato crop development and seed tuber microbiome data can be used to predict potato vigour, or growth potential, in next-season crops in trial fields.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
块茎微生物组可以预测马铃薯品种的生长潜力
马铃薯活力,即种子马铃薯的生长潜力,是一项关键的农艺性状,由于遗传背景和环境条件等因素,在不同的生产领域差异很大。块茎微生物组被认为影响植物健康和作物性能,但微生物组组成与马铃薯活力之间的确切关系尚不清楚。在这里,我们对240块地种植的6个马铃薯品种的种块茎眼和跟端进行了微生物组测序。通过对下一季三个试验田的时间分辨率无人机成像来跟踪作物发育,我们能够将微生物组组成与马铃薯活力联系起来。我们利用不同分类学分辨率下的微生物组数据建立随机森林预测模型,发现扩增子序列变异对马铃薯活力的预测精度最高。该模型揭示了独立试验田种子块茎微生物组与下一季作物活力之间的品种特异性关系。对于表现最好的品种,该模型的决定系数为0.69,该模型准确地预测了以前未包括在分析中的田块茎的活力。此外,该模型确定了活力的关键微生物指标,其中链霉菌,不动杆菌和细胞弧菌扩增序列变体是模型准确性的最重要贡献者。该研究表明,基于与种块茎眼相关的微生物群,可以可靠地预测种子马铃薯的活力,这可能指导未来的微生物组育种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Microbiology
Nature Microbiology Immunology and Microbiology-Microbiology
CiteScore
44.40
自引率
1.10%
发文量
226
期刊介绍: Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes: Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time. Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes. Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments. Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation. In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.
期刊最新文献
Surpassing natural limits in one-carbon assimilation Rethinking concepts of virulence with Neisseria gonorrhoeae One-carbon fixation via the synthetic reductive glycine pathway exceeds yield of the Calvin cycle CRISPRi-ART enables functional genomics of diverse bacteriophages using RNA-binding dCas13d Publisher Correction: Design and regulation of engineered bacteria for environmental release
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1