Full recovery of brines at normal temperature with process-heat-supplied coupled air-carried evaporating separation (ACES) cycle

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2024-12-26 DOI:10.1038/s41545-024-00430-6
Jing Yu, Yujiang Xia, Liang Chen, Weidong Yan, Baobin Liu, Sumin Jin
{"title":"Full recovery of brines at normal temperature with process-heat-supplied coupled air-carried evaporating separation (ACES) cycle","authors":"Jing Yu, Yujiang Xia, Liang Chen, Weidong Yan, Baobin Liu, Sumin Jin","doi":"10.1038/s41545-024-00430-6","DOIUrl":null,"url":null,"abstract":"Conventional air-carried evaporating separation (ACES) technology, to achieve complete separation and recovery of water and salt in brine, tends to necessitate heating air above a critical temperature (typically>90 °C). In this paper, a novel concept of process-heat-supplied and an ACES cycle with this technique is proposed. A comprehensive thermodynamic analytical investigation is conducted. The results indicate that at heat source supply temperature Tsupply of only 45.17 °C, this novel unit is capable of achieving complete separation of water and salt from 5 wt% concentration brine. Meanwhile, thermodynamic mechanism analysis reveals that sufficient process-heat-supplied affords the fluid self-adaptive regulation on the driving potential of heat and mass transfer, thus circumventing traditional heat and mass transfer limitation. Additionally, a solar ACES system with process-heat-supplied incorporating heat pump is further proposed. For this system, theoretical evaporation rate for unit area of solar irradiation me-solar = 2.23 kg/(m2·h), integrated solar utilization efficiency ηi = 188%; while considering overall losses me-solar = 1.41 kg/(m2·h), ηi = 95.2%.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-21"},"PeriodicalIF":10.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00430-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00430-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional air-carried evaporating separation (ACES) technology, to achieve complete separation and recovery of water and salt in brine, tends to necessitate heating air above a critical temperature (typically>90 °C). In this paper, a novel concept of process-heat-supplied and an ACES cycle with this technique is proposed. A comprehensive thermodynamic analytical investigation is conducted. The results indicate that at heat source supply temperature Tsupply of only 45.17 °C, this novel unit is capable of achieving complete separation of water and salt from 5 wt% concentration brine. Meanwhile, thermodynamic mechanism analysis reveals that sufficient process-heat-supplied affords the fluid self-adaptive regulation on the driving potential of heat and mass transfer, thus circumventing traditional heat and mass transfer limitation. Additionally, a solar ACES system with process-heat-supplied incorporating heat pump is further proposed. For this system, theoretical evaporation rate for unit area of solar irradiation me-solar = 2.23 kg/(m2·h), integrated solar utilization efficiency ηi = 188%; while considering overall losses me-solar = 1.41 kg/(m2·h), ηi = 95.2%.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用工艺供热耦合空气蒸发分离(ACES)循环,在常温下完全回收卤水
传统的空气携带蒸发分离(ACES)技术,为了实现盐水中水和盐的完全分离和回收,往往需要将空气加热到临界温度(通常为90℃)以上。本文提出了一种新的过程供热概念和利用该技术的ACES循环。进行了全面的热力学分析研究。结果表明,在热源温度仅为45.17℃的情况下,该装置能够从浓度为5 wt%的卤水中实现水盐完全分离。同时,热力学机理分析表明,充足的过程热供给对传热传质驱动势进行了流体自适应调节,从而规避了传统的传热传质限制。此外,还提出了一种结合热泵的过程供热太阳能ACES系统。对于该系统,单位面积太阳辐照的理论蒸发速率me-solar = 2.23 kg/(m2·h),太阳能综合利用效率ηi = 188%;考虑总损失me-solar = 1.41 kg/(m2·h), ηi = 95.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Quantum machine learning regression optimisation for full-scale sewage sludge anaerobic digestion Preparation of unsaturated MIL-101(Cr) with Lewis acid sites for the extraordinary adsorption of anionic dyes Antimicrobial resistant enteric bacteria are widely distributed among environmental water sources in Dhaka, Bangladesh Integrating livestock and aquatic plant towards mitigating antibiotic resistance transmission from swine wastewater Machine learning prediction of ammonia nitrogen adsorption on biochar with model evaluation and optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1