An operational definition of quantum information scrambling

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2024-12-27 DOI:10.1088/2058-9565/ad9ed2
Gabriele Lo Monaco, Luca Innocenti, Dario Cilluffo, Diana A Chisholm, Salvatore Lorenzo and G Massimo Palma
{"title":"An operational definition of quantum information scrambling","authors":"Gabriele Lo Monaco, Luca Innocenti, Dario Cilluffo, Diana A Chisholm, Salvatore Lorenzo and G Massimo Palma","doi":"10.1088/2058-9565/ad9ed2","DOIUrl":null,"url":null,"abstract":"Quantum information scrambling (QIS) is a characteristic feature of several quantum systems, ranging from black holes to quantum communication networks. While accurately quantifying QIS is crucial to understanding many such phenomena, common approaches based on the tripartite information have limitations due to the accessibility issues of quantum mutual information, and do not always properly take into consideration the dependence on the encoding input basis. To address these issues, we propose a novel and computationally efficient QIS quantifier, based on a formulation of QIS in terms of quantum state discrimination. We show that the optimal guessing probability, which reflects the degree of QIS induced by an isometric quantum evolution, is directly connected to the accessible min-information, a generalized channel capacity based on conditional min-entropy, which can be cast as a convex program and thus computed efficiently. By applying our proposal to a range of examples with increasing complexity, we illustrate its ability to capture the multifaceted nature of QIS in all its intricacy.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"25 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad9ed2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum information scrambling (QIS) is a characteristic feature of several quantum systems, ranging from black holes to quantum communication networks. While accurately quantifying QIS is crucial to understanding many such phenomena, common approaches based on the tripartite information have limitations due to the accessibility issues of quantum mutual information, and do not always properly take into consideration the dependence on the encoding input basis. To address these issues, we propose a novel and computationally efficient QIS quantifier, based on a formulation of QIS in terms of quantum state discrimination. We show that the optimal guessing probability, which reflects the degree of QIS induced by an isometric quantum evolution, is directly connected to the accessible min-information, a generalized channel capacity based on conditional min-entropy, which can be cast as a convex program and thus computed efficiently. By applying our proposal to a range of examples with increasing complexity, we illustrate its ability to capture the multifaceted nature of QIS in all its intricacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子信息置乱的操作定义
量子信息置乱(QIS)是一些量子系统的特征,从黑洞到量子通信网络。虽然准确量化QIS对于理解许多此类现象至关重要,但由于量子互信息的可及性问题,基于三方信息的常见方法存在局限性,并且并不总是适当地考虑对编码输入基的依赖性。为了解决这些问题,我们提出了一种新的计算效率高的QIS量词,基于量子态判别的QIS公式。我们证明了反映等距量子演化引起的QIS程度的最优猜测概率与可访问的最小信息直接相关,这是一种基于条件最小熵的广义信道容量,可以将其转换为凸程序,从而有效地计算。通过将我们的建议应用于一系列日益复杂的例子,我们说明了它能够捕捉到QIS的复杂性的多面性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Characterization and thermometry of dissipatively stabilized steady states Heat transport in the quantum Rabi model: universality and ultrastrong coupling effects Security of hybrid BB84 with heterodyne detection Robustness of diabatic enhancement in quantum annealing Scalable high-dimensional multipartite entanglement with trapped ions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1