ARAScaler: Adaptive Resource Autoscaling Scheme Using ETimeMixer for Efficient Cloud-Native Computing

IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Services Computing Pub Date : 2024-12-25 DOI:10.1109/TSC.2024.3522815
Byeonghui Jeong;Young-Sik Jeong
{"title":"ARAScaler: Adaptive Resource Autoscaling Scheme Using ETimeMixer for Efficient Cloud-Native Computing","authors":"Byeonghui Jeong;Young-Sik Jeong","doi":"10.1109/TSC.2024.3522815","DOIUrl":null,"url":null,"abstract":"The container resource autoscaling techniques offer scalability and continuity for microservices operating in cloud-native computing environments. However, they manage resources inefficiently, causing resource waste and overload under complex workload patterns. In addition, these techniques fail to prevent oscillations caused by dynamic workloads, increasing the operational complexity. Therefore, we propose an adaptive resource autoscaling scheme (ARAScaler) to ensure the stability and resource efficiency of microservices with minimal scaling events. ARAScaler predicts future workloads using enhanced TimeMixer (ETimeMixer) applied with the convolutional method. Additionally, ARAScaler segments the predicted workload to identify burst, nonburst, dynamic, and static states and scales by calculating the optimal number of container instances for each identified state. The offline simulation results using seven cloud-workload trace datasets demonstrate the high prediction accuracy of ETimeMixer and the superior scaling performance of ARAScaler. The ARAScaler achieved a resource utilization of approximately 70% or higher with few updates and recorded the fewest resource overload instances compared to existing container resource autoscaling techniques.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"72-84"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816296/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The container resource autoscaling techniques offer scalability and continuity for microservices operating in cloud-native computing environments. However, they manage resources inefficiently, causing resource waste and overload under complex workload patterns. In addition, these techniques fail to prevent oscillations caused by dynamic workloads, increasing the operational complexity. Therefore, we propose an adaptive resource autoscaling scheme (ARAScaler) to ensure the stability and resource efficiency of microservices with minimal scaling events. ARAScaler predicts future workloads using enhanced TimeMixer (ETimeMixer) applied with the convolutional method. Additionally, ARAScaler segments the predicted workload to identify burst, nonburst, dynamic, and static states and scales by calculating the optimal number of container instances for each identified state. The offline simulation results using seven cloud-workload trace datasets demonstrate the high prediction accuracy of ETimeMixer and the superior scaling performance of ARAScaler. The ARAScaler achieved a resource utilization of approximately 70% or higher with few updates and recorded the fewest resource overload instances compared to existing container resource autoscaling techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ARAScaler:使用ETimeMixer实现高效云原生计算的自适应资源自动缩放方案
容器资源自动伸缩技术为在云原生计算环境中运行的微服务提供了可伸缩性和连续性。然而,它们对资源的管理效率低下,在复杂的工作负载模式下造成资源浪费和过载。此外,这些技术无法防止由动态工作负载引起的振荡,从而增加了操作复杂性。因此,我们提出了一种自适应资源自动伸缩方案(ARAScaler),以最小的伸缩事件保证微服务的稳定性和资源效率。ARAScaler使用卷积方法应用的增强TimeMixer (ETimeMixer)预测未来的工作负载。此外,ARAScaler对预测的工作负载进行分段,以识别突发、非突发、动态和静态状态,并通过计算每个已识别状态的容器实例的最佳数量进行扩展。使用7个云工作负载跟踪数据集的离线仿真结果表明,ETimeMixer具有较高的预测精度,ARAScaler具有优越的缩放性能。与现有的容器资源自动伸缩技术相比,ARAScaler在很少更新的情况下实现了大约70%或更高的资源利用率,并且记录了最少的资源过载实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Services Computing
IEEE Transactions on Services Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
11.50
自引率
6.20%
发文量
278
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.
期刊最新文献
Kafka-Thor: A Kafka-based In-Edge Data Streaming Platform for Enhanced V2X Services PeerSync: Accelerating Containerized Model Inference at the Network Edge SMAUG: Semantic-Enhanced Mobile App Usage Data Generation With LLM AC-BaaS: An Asynchronous Cross-Blockchain as a Service for the Internet of Things Efficient and Fault Tolerant Data Stream Processing With Uncertain Data Rates in Serverless Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1