Natural Adversarial Mask for Face Identity Protection in Physical World

Tianxin Xie;Hu Han;Shiguang Shan;Xilin Chen
{"title":"Natural Adversarial Mask for Face Identity Protection in Physical World","authors":"Tianxin Xie;Hu Han;Shiguang Shan;Xilin Chen","doi":"10.1109/TPAMI.2024.3522994","DOIUrl":null,"url":null,"abstract":"Facial recognition (FR) technology offers convenience in our daily lives, but it also raises serious privacy issues due to unauthorized FR applications. To protect facial privacy, existing methods have proposed adversarial face examples that can fool FR systems. However, most of these methods work only in the digital domain and do not consider natural physical protections. In this paper, we present NatMask, a 3D-based method for creating natural and realistic adversarial face masks that can preserve facial identity in the physical world. Our method utilizes 3D face reconstruction and differentiable rendering to generate 2D face images with natural-looking facial masks. Moreover, we propose an identity-aware style injection (IASI) method to improve the naturalness and transferability of the mask texture. We evaluate our method on two face datasets to verify its effectiveness in protecting face identity against four state-of-the-art (SOTA) FR models and three commercial FR APIs in both digital and physical domains under black-box impersonation and dodging strategies. Experiments show that our method can generate adversarial masks with superior naturalness and physical realizability to safeguard face identity, outperforming SOTA methods by a large margin.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 3","pages":"2089-2106"},"PeriodicalIF":18.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816466/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Facial recognition (FR) technology offers convenience in our daily lives, but it also raises serious privacy issues due to unauthorized FR applications. To protect facial privacy, existing methods have proposed adversarial face examples that can fool FR systems. However, most of these methods work only in the digital domain and do not consider natural physical protections. In this paper, we present NatMask, a 3D-based method for creating natural and realistic adversarial face masks that can preserve facial identity in the physical world. Our method utilizes 3D face reconstruction and differentiable rendering to generate 2D face images with natural-looking facial masks. Moreover, we propose an identity-aware style injection (IASI) method to improve the naturalness and transferability of the mask texture. We evaluate our method on two face datasets to verify its effectiveness in protecting face identity against four state-of-the-art (SOTA) FR models and three commercial FR APIs in both digital and physical domains under black-box impersonation and dodging strategies. Experiments show that our method can generate adversarial masks with superior naturalness and physical realizability to safeguard face identity, outperforming SOTA methods by a large margin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物理世界中面部身份保护的天然对抗面具
人脸识别技术为我们的日常生活提供了便利,但由于未经授权的人脸识别应用,它也引发了严重的隐私问题。为了保护面部隐私,现有方法提出了可以欺骗FR系统的对抗性面部示例。然而,这些方法大多只适用于数字领域,而不考虑自然的物理保护。在本文中,我们提出了NatMask,一种基于3d的方法,用于创建自然和逼真的对抗面具,可以在物理世界中保留面部身份。我们的方法利用三维人脸重建和可微渲染来生成具有自然表情的二维人脸图像。此外,我们提出了一种身份感知风格注入(identity-aware style injection, IASI)方法来提高蒙版纹理的自然度和可移植性。我们在两个人脸数据集上评估了我们的方法,以验证其在黑盒模拟和躲避策略下保护人脸身份免受四种最先进(SOTA)人脸识别模型和三种商业人脸识别api在数字和物理领域的有效性。实验表明,该方法可以生成具有良好自然度和物理可实现性的对抗掩码,以保护人脸身份,大大优于SOTA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning-Based Multi-View Stereo: A Survey. GrowSP++: Growing Superpoints and Primitives for Unsupervised 3D Semantic Segmentation. Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1