Muhammet Emin Emiroglu, Erdinc Ikinciogullari, Eyyup Ensar Yalcin, Enes Gul
{"title":"Investigation of the flow characteristics of slit check dams using novel models","authors":"Muhammet Emin Emiroglu, Erdinc Ikinciogullari, Eyyup Ensar Yalcin, Enes Gul","doi":"10.1007/s13201-024-02344-7","DOIUrl":null,"url":null,"abstract":"<div><p>Floods, which cause loss of life and property and destruction of the environment, have devastating effects on socio-economic welfare. Slit-check dams are essential structures for managing the transport of silt and woody debris, especially in events of significant floods. The current study presents the hydraulic characteristics of slit-check dams with different geometries for experimental and numerical tests. First, the Butterfly model was produced with a 3D printer and examined experimentally. Then, the Butterfly model was validated extensively using OpenFOAM (<i>v</i>7) software for the numerical analysis. Finally, the other models were examined numerically using the k-ε turbulence model. The changes in water surface profile, velocity profiles, energy dissipation rates, and streamlines were comprehensively examined and discussed. The results showed that slit-check dams caused hydraulic jumps and dissipated flow energy. The Arced and Rectangular models, in particular, demonstrated a significant performance for energy dissipation, which is essential for flood management. Water surface profiles are directly affected by discharge. Moreover, the cross-sectional length of the model in question significantly affects the water surface profile. Accordingly, an increase was observed in the velocity profiles along the slit-check dam. While the maximum velocity for all unit discharge was observed in the V-shaped model, the minimum velocities were observed for the Arced and Rectangular models. Thus, the energy absorption performance of Arced and Rectangular models is higher.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02344-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02344-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Floods, which cause loss of life and property and destruction of the environment, have devastating effects on socio-economic welfare. Slit-check dams are essential structures for managing the transport of silt and woody debris, especially in events of significant floods. The current study presents the hydraulic characteristics of slit-check dams with different geometries for experimental and numerical tests. First, the Butterfly model was produced with a 3D printer and examined experimentally. Then, the Butterfly model was validated extensively using OpenFOAM (v7) software for the numerical analysis. Finally, the other models were examined numerically using the k-ε turbulence model. The changes in water surface profile, velocity profiles, energy dissipation rates, and streamlines were comprehensively examined and discussed. The results showed that slit-check dams caused hydraulic jumps and dissipated flow energy. The Arced and Rectangular models, in particular, demonstrated a significant performance for energy dissipation, which is essential for flood management. Water surface profiles are directly affected by discharge. Moreover, the cross-sectional length of the model in question significantly affects the water surface profile. Accordingly, an increase was observed in the velocity profiles along the slit-check dam. While the maximum velocity for all unit discharge was observed in the V-shaped model, the minimum velocities were observed for the Arced and Rectangular models. Thus, the energy absorption performance of Arced and Rectangular models is higher.