Evaluating land use ımpact on evapotranspiration in Yellow River Basin China through a novel GSEBAL model: a remote sensing perspective

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES Applied Water Science Pub Date : 2024-12-28 DOI:10.1007/s13201-024-02345-6
Sheheryar Khan, Wang Huiliang, Umer Nauman, Muhammad Waseem Boota, Zening Wu
{"title":"Evaluating land use ımpact on evapotranspiration in Yellow River Basin China through a novel GSEBAL model: a remote sensing perspective","authors":"Sheheryar Khan,&nbsp;Wang Huiliang,&nbsp;Umer Nauman,&nbsp;Muhammad Waseem Boota,&nbsp;Zening Wu","doi":"10.1007/s13201-024-02345-6","DOIUrl":null,"url":null,"abstract":"<div><p>Evapotranspiration (ET) is critical to surface water dynamics. Effective water resource management necessitates an accurate ET estimation. In the Yellow River Basin China, a study area, cutting-edge technologies are needed to improve large-scale ET estimates. This study estimates ET using GSEBAL, an advanced ET estimation algorithm. Google Earth Engine integrates the surface energy balance model-based GSEBAL. The technique includes the collection, preparation, and calculation of ET using Landsat imagery and ERA5-Land meteorological data from 1990 to 2020. The study examined satellite LST, albedo, and NDVI data. The GSEBAL model calculates soil heat flow, net radiation, and sensible heat flux. The study tested the GSEBAL model utilizing essential ET datasets such as ECOSTRESS, MOD16, and SSEBop. The study showed that the model effectively predicted daily and seasonal ET variations in different climates. Root mean squared error, bias, and Pearson's correlation coefficient verified the model's reliability. The study also analyzed land use and land cover (LULC) over 30 years using Random Forest classifiers. In the 1990–2020 YRBC ET, land use changes affect ET rates annually and seasonally. The study area experiences changes in LST, NDVI, and LULC. Maximum ET values rose from 214.217 mm in 1990 to 234.891 mm in 2000. The pattern flipped in 2020, decreasing to 221.456 mm. In 2010, Summer had the highest ET, 484.455 mm. 2020 spring ET is 314.727 mm. Low ET decreased from 24.652 mm in 1990 to 18.2 mm in 2020, reducing water loss. Fall ET peaks at 24.9 mm in 2020; winter ET is 18.75 mm.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02345-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02345-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Evapotranspiration (ET) is critical to surface water dynamics. Effective water resource management necessitates an accurate ET estimation. In the Yellow River Basin China, a study area, cutting-edge technologies are needed to improve large-scale ET estimates. This study estimates ET using GSEBAL, an advanced ET estimation algorithm. Google Earth Engine integrates the surface energy balance model-based GSEBAL. The technique includes the collection, preparation, and calculation of ET using Landsat imagery and ERA5-Land meteorological data from 1990 to 2020. The study examined satellite LST, albedo, and NDVI data. The GSEBAL model calculates soil heat flow, net radiation, and sensible heat flux. The study tested the GSEBAL model utilizing essential ET datasets such as ECOSTRESS, MOD16, and SSEBop. The study showed that the model effectively predicted daily and seasonal ET variations in different climates. Root mean squared error, bias, and Pearson's correlation coefficient verified the model's reliability. The study also analyzed land use and land cover (LULC) over 30 years using Random Forest classifiers. In the 1990–2020 YRBC ET, land use changes affect ET rates annually and seasonally. The study area experiences changes in LST, NDVI, and LULC. Maximum ET values rose from 214.217 mm in 1990 to 234.891 mm in 2000. The pattern flipped in 2020, decreasing to 221.456 mm. In 2010, Summer had the highest ET, 484.455 mm. 2020 spring ET is 314.727 mm. Low ET decreased from 24.652 mm in 1990 to 18.2 mm in 2020, reducing water loss. Fall ET peaks at 24.9 mm in 2020; winter ET is 18.75 mm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Modeling and experimental validation of nanophotonics-enhanced solar membrane distillation technology for treating reverse osmosis brine Human health risk assessment of drinking water using heavy metal pollution index: a GIS-based investigation in mega city Investigation of the flow characteristics of slit check dams using novel models Evaluating land use ımpact on evapotranspiration in Yellow River Basin China through a novel GSEBAL model: a remote sensing perspective Dissipative disorder analysis of Homann flow of Walters B fluid with the applications of solar thermal energy absorption aspects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1