Evaluating land use ımpact on evapotranspiration in Yellow River Basin China through a novel GSEBAL model: a remote sensing perspective

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES Applied Water Science Pub Date : 2024-12-28 DOI:10.1007/s13201-024-02345-6
Sheheryar Khan, Wang Huiliang, Umer Nauman, Muhammad Waseem Boota, Zening Wu
{"title":"Evaluating land use ımpact on evapotranspiration in Yellow River Basin China through a novel GSEBAL model: a remote sensing perspective","authors":"Sheheryar Khan,&nbsp;Wang Huiliang,&nbsp;Umer Nauman,&nbsp;Muhammad Waseem Boota,&nbsp;Zening Wu","doi":"10.1007/s13201-024-02345-6","DOIUrl":null,"url":null,"abstract":"<div><p>Evapotranspiration (ET) is critical to surface water dynamics. Effective water resource management necessitates an accurate ET estimation. In the Yellow River Basin China, a study area, cutting-edge technologies are needed to improve large-scale ET estimates. This study estimates ET using GSEBAL, an advanced ET estimation algorithm. Google Earth Engine integrates the surface energy balance model-based GSEBAL. The technique includes the collection, preparation, and calculation of ET using Landsat imagery and ERA5-Land meteorological data from 1990 to 2020. The study examined satellite LST, albedo, and NDVI data. The GSEBAL model calculates soil heat flow, net radiation, and sensible heat flux. The study tested the GSEBAL model utilizing essential ET datasets such as ECOSTRESS, MOD16, and SSEBop. The study showed that the model effectively predicted daily and seasonal ET variations in different climates. Root mean squared error, bias, and Pearson's correlation coefficient verified the model's reliability. The study also analyzed land use and land cover (LULC) over 30 years using Random Forest classifiers. In the 1990–2020 YRBC ET, land use changes affect ET rates annually and seasonally. The study area experiences changes in LST, NDVI, and LULC. Maximum ET values rose from 214.217 mm in 1990 to 234.891 mm in 2000. The pattern flipped in 2020, decreasing to 221.456 mm. In 2010, Summer had the highest ET, 484.455 mm. 2020 spring ET is 314.727 mm. Low ET decreased from 24.652 mm in 1990 to 18.2 mm in 2020, reducing water loss. Fall ET peaks at 24.9 mm in 2020; winter ET is 18.75 mm.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02345-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02345-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Evapotranspiration (ET) is critical to surface water dynamics. Effective water resource management necessitates an accurate ET estimation. In the Yellow River Basin China, a study area, cutting-edge technologies are needed to improve large-scale ET estimates. This study estimates ET using GSEBAL, an advanced ET estimation algorithm. Google Earth Engine integrates the surface energy balance model-based GSEBAL. The technique includes the collection, preparation, and calculation of ET using Landsat imagery and ERA5-Land meteorological data from 1990 to 2020. The study examined satellite LST, albedo, and NDVI data. The GSEBAL model calculates soil heat flow, net radiation, and sensible heat flux. The study tested the GSEBAL model utilizing essential ET datasets such as ECOSTRESS, MOD16, and SSEBop. The study showed that the model effectively predicted daily and seasonal ET variations in different climates. Root mean squared error, bias, and Pearson's correlation coefficient verified the model's reliability. The study also analyzed land use and land cover (LULC) over 30 years using Random Forest classifiers. In the 1990–2020 YRBC ET, land use changes affect ET rates annually and seasonally. The study area experiences changes in LST, NDVI, and LULC. Maximum ET values rose from 214.217 mm in 1990 to 234.891 mm in 2000. The pattern flipped in 2020, decreasing to 221.456 mm. In 2010, Summer had the highest ET, 484.455 mm. 2020 spring ET is 314.727 mm. Low ET decreased from 24.652 mm in 1990 to 18.2 mm in 2020, reducing water loss. Fall ET peaks at 24.9 mm in 2020; winter ET is 18.75 mm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GSEBAL模型的黄河流域土地利用ımpact蒸散量遥感评价
蒸散发(ET)对地表水动力学至关重要。有效的水资源管理需要准确的蒸散发估算。在研究区黄河流域,需要尖端技术来改善大尺度ET估算。本研究使用一种先进的ET估计算法GSEBAL来估计ET。谷歌Earth Engine集成了基于地表能量平衡模型的GSEBAL。该技术包括利用1990 - 2020年Landsat图像和era5陆地气象数据收集、准备和计算ET。该研究检查了卫星地表温度、反照率和NDVI数据。GSEBAL模型计算土壤热流、净辐射和感热通量。该研究利用ECOSTRESS、MOD16和SSEBop等基本ET数据集对GSEBAL模型进行了测试。研究表明,该模式能有效预测不同气候条件下的日蒸散发和季节蒸散发变化。均方根误差、偏倚和Pearson相关系数验证了模型的可靠性。该研究还使用随机森林分类器分析了30年来的土地利用和土地覆盖(LULC)。在1990-2020年YRBC ET中,土地利用变化影响ET的年际和季节变化。研究区地表温度、NDVI和LULC发生了变化。最大ET值从1990年的214.217 mm上升到2000年的234.891 mm。该模式在2020年翻转,减少到221.456毫米。2010年夏季ET最高,为484.455 mm, 2020年春季ET为314.727 mm。低蒸散发从1990年的24.652 mm减少到2020年的18.2 mm,减少了水分损失。2020年秋季ET峰值为24.9 mm;冬季ET为18.75毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Investigation of the impact of seawater intrusion on the agricultural land quality along river margins Preparation of Ag@Ag2O/AgCl composite photocatalytic material and degradation performance for SD I under sunlight Nanofluid magnetoconvection and entropy generation: a computational study for water treatment and resource management Comparative analysis of groundwater potential assessment in Dharmapuri District, Tamil Nadu, India Separation of phycocyanin from Arthrospira platensis (spirulina) by application of ceramic microfiltration membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1