Yanyan Chen, Yuanyuan Song, Zhu Yang, Yi Ru, Peisi Xie, Jing Han, Xuyang Chai, Jianing Wang, Zongwei Cai
{"title":"Optimized MALDI2-Mass Spectrometry Imaging for Stable Isotope Tracing of Tissue-Specific Metabolic Pathways in Mice","authors":"Yanyan Chen, Yuanyuan Song, Zhu Yang, Yi Ru, Peisi Xie, Jing Han, Xuyang Chai, Jianing Wang, Zongwei Cai","doi":"10.1021/acs.analchem.4c04600","DOIUrl":null,"url":null,"abstract":"Spatial stable isotope tracing metabolic imaging is a cutting-edge technique designed to investigate tissue-specific metabolic functions and heterogeneity. Traditional matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) techniques often struggle with low coverage of low-molecular-weight (LMW) metabolites, which are often crucial for spatial metabolic studies. To address this, we developed a high-coverage spatial isotope tracing metabolic method that incorporates optimized matrix selection, sample preparation protocols, and enhanced post-ionization (MALDI2) techniques. We employed this approach to mouse kidney, brain, and breast tumors to visualize the spatial dynamics of metabolic flow. Our results revealed diverse regional distributions of nine labeled intermediates derived from <sup>13</sup>C<sub>6</sub>-glucose across glycolysis, glycogen metabolism, and the tricarboxylic acid (TCA) cycle in kidney tissues. In brain sections, we successfully mapped six intermediates from the TCA cycle and glutamate-glutamine (Glu-Gln) cycle simultaneously in distinct neurological regions. Furthermore, in breast cancer tumor tissues, our approach facilitated the mapping of nine metabolic intermediates in multiple pathways, including glycolysis, the pentose phosphate pathway (PPP), and the TCA cycle, illustrating metabolic heterogeneity within the tumor microenvironment. This methodology enhances metabolite coverage, enabling more comprehensive imaging of isotope-labeled metabolites and opening new avenues for exploring the metabolic landscape in various biological contexts.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"42 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04600","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial stable isotope tracing metabolic imaging is a cutting-edge technique designed to investigate tissue-specific metabolic functions and heterogeneity. Traditional matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) techniques often struggle with low coverage of low-molecular-weight (LMW) metabolites, which are often crucial for spatial metabolic studies. To address this, we developed a high-coverage spatial isotope tracing metabolic method that incorporates optimized matrix selection, sample preparation protocols, and enhanced post-ionization (MALDI2) techniques. We employed this approach to mouse kidney, brain, and breast tumors to visualize the spatial dynamics of metabolic flow. Our results revealed diverse regional distributions of nine labeled intermediates derived from 13C6-glucose across glycolysis, glycogen metabolism, and the tricarboxylic acid (TCA) cycle in kidney tissues. In brain sections, we successfully mapped six intermediates from the TCA cycle and glutamate-glutamine (Glu-Gln) cycle simultaneously in distinct neurological regions. Furthermore, in breast cancer tumor tissues, our approach facilitated the mapping of nine metabolic intermediates in multiple pathways, including glycolysis, the pentose phosphate pathway (PPP), and the TCA cycle, illustrating metabolic heterogeneity within the tumor microenvironment. This methodology enhances metabolite coverage, enabling more comprehensive imaging of isotope-labeled metabolites and opening new avenues for exploring the metabolic landscape in various biological contexts.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.