Retrieving aerosol single scattering albedo from FY-3D observations combining machine learning with radiative transfer model

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Research Pub Date : 2024-12-23 DOI:10.1016/j.atmosres.2024.107884
Qingxin Wang, Siwei Li, Zhaoyang Zhang, Xingwen Lin, Yanmin Shuai, Xinyan Liu, Hao Lin
{"title":"Retrieving aerosol single scattering albedo from FY-3D observations combining machine learning with radiative transfer model","authors":"Qingxin Wang, Siwei Li, Zhaoyang Zhang, Xingwen Lin, Yanmin Shuai, Xinyan Liu, Hao Lin","doi":"10.1016/j.atmosres.2024.107884","DOIUrl":null,"url":null,"abstract":"This study proposed a new method to retrieve aerosol single scattering albedo (SSA) over land for the Medium Resolution Spectral Imager-II (MERSI-II) onboard the Fengyun-3D (FY-3D). Considering both accuracy and retrieval efficiency, the method combines machine learning with an aerosol optical model constructed from mixed aerosol components. A sample dataset, containing 4 bands of apparent reflectance simulated by the radiative transfer model and corresponding geometric conditions, aerosol and land surface information, is constructed for training and validating machine learning models. Three Back Propagation Neural Network (BPNN) SSA retrieval models are built based on the theoretical basis of SSA retrieval, and the sensitivity of SSA retrieval accuracy to input parameter errors is analyzed. The results show that BPNN-based SSA retrieval models can replace the iterative optimal solution process to a certain extent, achieving quick retrieval of satellite SSA. The BPNN SSA retrieval models are applied to FY-3D MERSI-II observations and validated using AERONET SSA products. The results indicate that the BPNN SSA retrieval model, which uses solar zenith angle, satellite zenith angle, relative azimuth angle, aerosol optical depth (AOD), surface altitude, bi-directional reflectance distribution function (BRDF) parameters (bands 1–2), and apparent reflectance (bands 1–4) as inputs, performs better than others. The retrievals show good consistency with AERONET SSA products with a correlation coefficient of approximately 0.5 and a root mean square error (RMSE) of 0.045 (0.034) at 470 nm (550 nm). In addition, more than 66 % of the SSA retrievals are within the expected error of ±0.05.","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"202 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.atmosres.2024.107884","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposed a new method to retrieve aerosol single scattering albedo (SSA) over land for the Medium Resolution Spectral Imager-II (MERSI-II) onboard the Fengyun-3D (FY-3D). Considering both accuracy and retrieval efficiency, the method combines machine learning with an aerosol optical model constructed from mixed aerosol components. A sample dataset, containing 4 bands of apparent reflectance simulated by the radiative transfer model and corresponding geometric conditions, aerosol and land surface information, is constructed for training and validating machine learning models. Three Back Propagation Neural Network (BPNN) SSA retrieval models are built based on the theoretical basis of SSA retrieval, and the sensitivity of SSA retrieval accuracy to input parameter errors is analyzed. The results show that BPNN-based SSA retrieval models can replace the iterative optimal solution process to a certain extent, achieving quick retrieval of satellite SSA. The BPNN SSA retrieval models are applied to FY-3D MERSI-II observations and validated using AERONET SSA products. The results indicate that the BPNN SSA retrieval model, which uses solar zenith angle, satellite zenith angle, relative azimuth angle, aerosol optical depth (AOD), surface altitude, bi-directional reflectance distribution function (BRDF) parameters (bands 1–2), and apparent reflectance (bands 1–4) as inputs, performs better than others. The retrievals show good consistency with AERONET SSA products with a correlation coefficient of approximately 0.5 and a root mean square error (RMSE) of 0.045 (0.034) at 470 nm (550 nm). In addition, more than 66 % of the SSA retrievals are within the expected error of ±0.05.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合机器学习和辐射传输模型的FY-3D观测反演气溶胶单散射反照率
提出了一种利用风云三号卫星(FY-3D)机载中分辨率光谱成像仪(MERSI-II)反演陆地气溶胶单次散射反照率(SSA)的新方法。该方法考虑了准确性和检索效率,将机器学习与混合气溶胶组分构建的气溶胶光学模型相结合。构建了一个样本数据集,包含辐射传输模型模拟的4个波段的视反射率以及相应的几何条件、气溶胶和地表信息,用于训练和验证机器学习模型。基于SSA检索的理论基础,建立了三种反向传播神经网络(BPNN) SSA检索模型,并分析了SSA检索精度对输入参数误差的敏感性。结果表明,基于bpnn的SSA检索模型可以在一定程度上替代迭代最优解过程,实现卫星SSA的快速检索。BPNN SSA检索模型应用于FY-3D MERSI-II观测,并使用AERONET SSA产品进行验证。结果表明,以太阳天顶角、卫星天顶角、相对方位角、气溶胶光学深度(AOD)、地表高度、双向反射率分布函数(BRDF)参数(波段1-2)和视反射率(波段1-4)为输入的BPNN SSA反演模型效果较好。在470 nm (550 nm)处,相关系数约为0.5,均方根误差(RMSE)为0.045(0.034),与AERONET SSA产品具有良好的一致性。此外,超过66%的SSA检索在±0.05的预期误差范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
期刊最新文献
New insights into the molecular characteristics-dependent light absorption variation of water-soluble organic matter in biomass burning smoke Black carbon pollution over India simulated with recent emission inventories and WRF-CHEM model Characteristics of local recirculation affecting summer ozone in coastal areas of the Korean Peninsula Impacts of meteorological and precursor emission factors on PM2.5 and O3 from 2019 to 2022: Insights from multiple perspectives Evaluation of six latest precipitation datasets for extreme precipitation estimates and hydrological application across various climate regions in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1