Comparative Study on the Effect of Ethylene Cofeeding in CO2 and CO Hydrogenation to Olefins over FeZnNa Catalyst

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-12-27 DOI:10.1021/acscatal.4c06550
Kaiyu Zhu, Xingwu Liu, Haoyi Tang, Shuheng Tian, Junzhong Xie, Lingzhen Zeng, Tianye Wang, Hongwei Li, Meng Wang, Ding Ma
{"title":"Comparative Study on the Effect of Ethylene Cofeeding in CO2 and CO Hydrogenation to Olefins over FeZnNa Catalyst","authors":"Kaiyu Zhu, Xingwu Liu, Haoyi Tang, Shuheng Tian, Junzhong Xie, Lingzhen Zeng, Tianye Wang, Hongwei Li, Meng Wang, Ding Ma","doi":"10.1021/acscatal.4c06550","DOIUrl":null,"url":null,"abstract":"The hydrogenation of CO and CO<sub>2</sub> to long-chain olefins presents a promising route for chemical production, but optimizing the reaction process requires a thorough understanding of the tail gas recycling process. The effects of cofeeding ethylene on the hydrogenation of CO and CO<sub>2</sub> using a zinc- and sodium-promoted iron catalyst (FeZnNa catalyst) are carefully investigated in this work. For CO<sub>2</sub> hydrogenation, ethylene showed negligible impact on CO<sub>2</sub> conversion, CO selectivity, or CH<sub>4</sub> selectivity but primarily served as a feedstock for the production of ethane and higher carbon number olefins. In contrast, during CO hydrogenation, CO conversion improved with ethylene cofeeding. Ethylene also contributed to chain growth, although a higher fraction was converted to ethane via hydrogenation compared to CO<sub>2</sub> hydrogenation. Structural analysis using XRD and Mössbauer spectroscopy revealed that the catalyst in CO<sub>2</sub> hydrogenation consisted exclusively of the Fe<sub>5</sub>C<sub>2</sub> phase, whereas CO hydrogenation resulted in the formation of both Fe<sub>5</sub>C<sub>2</sub> and Fe<sub>2</sub>C phases. XPS and TPO analyses indicated significantly lower carbon deposition on the catalyst during CO<sub>2</sub> hydrogenation compared to that during CO hydrogenation.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"20 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c06550","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrogenation of CO and CO2 to long-chain olefins presents a promising route for chemical production, but optimizing the reaction process requires a thorough understanding of the tail gas recycling process. The effects of cofeeding ethylene on the hydrogenation of CO and CO2 using a zinc- and sodium-promoted iron catalyst (FeZnNa catalyst) are carefully investigated in this work. For CO2 hydrogenation, ethylene showed negligible impact on CO2 conversion, CO selectivity, or CH4 selectivity but primarily served as a feedstock for the production of ethane and higher carbon number olefins. In contrast, during CO hydrogenation, CO conversion improved with ethylene cofeeding. Ethylene also contributed to chain growth, although a higher fraction was converted to ethane via hydrogenation compared to CO2 hydrogenation. Structural analysis using XRD and Mössbauer spectroscopy revealed that the catalyst in CO2 hydrogenation consisted exclusively of the Fe5C2 phase, whereas CO hydrogenation resulted in the formation of both Fe5C2 and Fe2C phases. XPS and TPO analyses indicated significantly lower carbon deposition on the catalyst during CO2 hydrogenation compared to that during CO hydrogenation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FeZnNa催化剂上CO2加氢和CO加氢乙烯对烯烃影响的比较研究
CO和CO2加氢制长链烯烃是一条很有前途的化工生产途径,但优化反应过程需要对尾气回收过程有深入的了解。本文研究了锌钠促进铁催化剂(FeZnNa催化剂)共投乙烯对CO和CO2加氢反应的影响。对于CO2加氢,乙烯对CO2转化率、CO选择性或CH4选择性的影响可以忽略不计,但主要作为乙烷和高碳数烯烃的原料。在CO加氢过程中,乙烯共进料提高了CO的转化率。乙烯也促进了链的生长,尽管与二氧化碳加氢相比,通过加氢转化为乙烷的比例更高。XRD和Mössbauer光谱分析表明,CO2加氢过程中催化剂只形成Fe5C2相,而CO加氢过程中催化剂同时形成Fe5C2和Fe2C相。XPS和TPO分析表明,与CO加氢过程相比,CO2加氢过程中催化剂上的碳沉积明显减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Visible Light-Photoinduced and Cu-Catalyzed Reduction of Nitrobenzenes into Anilines Modulation of the Electronic Properties of Co3O4 through Bi Octahedral Doping for Enhanced Activity in the Oxygen Evolution Reaction Microkinetic Assessment of Ligand-Exchanging Catalytic Cycles Late-Stage C–H Deuteration of (Hetero)Arenes via Deuterium-Bonding Enhanced Rhenium Catalysis Enantioselective Desymmetrization of Phosphinic Acids via Cu-Catalyzed O-Arylation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1