Telukuntla Sai Priya, Poonam Patil, Bandi Siva, Diya Roy, Radhika Dhote, Deepti Parashar, Kalichamy Alagarasu, Sarah Cherian, K. Suresh Babu
{"title":"Novel α-mangostin Derivatives as Promising Antiviral Agents: Isolation, Synthesis, and Evaluation Against Chikungunya Virus","authors":"Telukuntla Sai Priya, Poonam Patil, Bandi Siva, Diya Roy, Radhika Dhote, Deepti Parashar, Kalichamy Alagarasu, Sarah Cherian, K. Suresh Babu","doi":"10.1016/j.ejmech.2024.117227","DOIUrl":null,"url":null,"abstract":"Investigations into fruit and vegetable processing residues (FVPRs) offer huge opportunities to discover novel therapeutics against many diseases. In this study, detailed investigation of <em>Garcinia mangostana</em> fruit peel extract led to the isolation and identification of ten known compounds (<strong>1</strong>-<strong>10</strong>). Further, a new series of α-mangostin derived sulphonamides, aryl alkynes and 1,2,3-triazole derivatives were synthesized using Huisgen 1,3-dipolar cyclo-addition reaction (“click” chemistry). Both isolated compounds and synthetic derivatives were evaluated for their anti-chikungunya activity (CHIKV). Isolated compounds, gartanin (<strong>1</strong>), mangostenone-F (<strong>4</strong>), 1-isomangostin (<strong>5</strong>), mangostenone-D (<strong>6</strong>), epicatechin (<strong>7</strong>) and derivatives <strong>14</strong>, <strong>15c</strong>, <strong>15d, 15e, 15f, 17d, 17f,</strong> and <strong>18h</strong> exerted anti-CHIKV activity. Compounds <strong>17d</strong>, <strong>17f</strong> and <strong>18h</strong> manifested higher antiviral activity (>2 log reduction in virus titer) with a selectivity index (SI) > 50. The compounds with higher antiviral activity were evaluated further with various assays, time of addition assay, entry and entry bypass assay and were also subjected to molecular docking with viral proteins. The results revealed that <strong>17d</strong>, <strong>17f</strong> and <strong>18h</strong> affect multiple stages of virus life cycle through probable interaction with envelope proteins and nsP3 macrodomain of CHIKV. Overall, this study provides evidence for anti CHIKV activity of natural xanthones from <em>Garcinia mangostana</em> L and their derivatives which could be further investigated for development of therapeutics against chikungunya.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"31 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117227","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Investigations into fruit and vegetable processing residues (FVPRs) offer huge opportunities to discover novel therapeutics against many diseases. In this study, detailed investigation of Garcinia mangostana fruit peel extract led to the isolation and identification of ten known compounds (1-10). Further, a new series of α-mangostin derived sulphonamides, aryl alkynes and 1,2,3-triazole derivatives were synthesized using Huisgen 1,3-dipolar cyclo-addition reaction (“click” chemistry). Both isolated compounds and synthetic derivatives were evaluated for their anti-chikungunya activity (CHIKV). Isolated compounds, gartanin (1), mangostenone-F (4), 1-isomangostin (5), mangostenone-D (6), epicatechin (7) and derivatives 14, 15c, 15d, 15e, 15f, 17d, 17f, and 18h exerted anti-CHIKV activity. Compounds 17d, 17f and 18h manifested higher antiviral activity (>2 log reduction in virus titer) with a selectivity index (SI) > 50. The compounds with higher antiviral activity were evaluated further with various assays, time of addition assay, entry and entry bypass assay and were also subjected to molecular docking with viral proteins. The results revealed that 17d, 17f and 18h affect multiple stages of virus life cycle through probable interaction with envelope proteins and nsP3 macrodomain of CHIKV. Overall, this study provides evidence for anti CHIKV activity of natural xanthones from Garcinia mangostana L and their derivatives which could be further investigated for development of therapeutics against chikungunya.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.