Kamran Rasheed, Mubashshir Ahmad Ansari, Shahnwaz Alam, Mohammad Nawaz Khan
{"title":"Performance analysis of T-shaped micromixers using an innovative bend structure of mixing channel","authors":"Kamran Rasheed, Mubashshir Ahmad Ansari, Shahnwaz Alam, Mohammad Nawaz Khan","doi":"10.1007/s10404-024-02783-3","DOIUrl":null,"url":null,"abstract":"<div><p>Passive micromixers, known for their notable mixing effectiveness and simple manufacturing, are extensively utilized in the lab on chip devices, the bio-medicinal industry, the pharma industry and chemical process. Among the various designs of passive micromixers, the simple T-junction micromixer and the vortex T-junction micromixer are basic designs. In this paper, a comparative study was performed to analyze the influence of bend structural channels on the mixing quality, pressure drop and mixing cost for simple and vortex T micromixers by using numerical simulations. Reynolds numbers (30–120) and angle of bend (θ) ranging from 0° to 180° are the crucial parameters for the investigation. The outcomes suggest that vortex T-junction micromixers with bend structural channels have a greater mixing index than simple T-junction micromixers with bend structural channels, across all the Reynolds values. The findings also suggest that increasing the angle of bend (θ) improves the mixing performance. Additionally, the degree of mixing performance and pressure reduction both exhibit a positive correlation with higher Reynolds numbers.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02783-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Passive micromixers, known for their notable mixing effectiveness and simple manufacturing, are extensively utilized in the lab on chip devices, the bio-medicinal industry, the pharma industry and chemical process. Among the various designs of passive micromixers, the simple T-junction micromixer and the vortex T-junction micromixer are basic designs. In this paper, a comparative study was performed to analyze the influence of bend structural channels on the mixing quality, pressure drop and mixing cost for simple and vortex T micromixers by using numerical simulations. Reynolds numbers (30–120) and angle of bend (θ) ranging from 0° to 180° are the crucial parameters for the investigation. The outcomes suggest that vortex T-junction micromixers with bend structural channels have a greater mixing index than simple T-junction micromixers with bend structural channels, across all the Reynolds values. The findings also suggest that increasing the angle of bend (θ) improves the mixing performance. Additionally, the degree of mixing performance and pressure reduction both exhibit a positive correlation with higher Reynolds numbers.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).