Modeling of the Surface Film Influence on Thermoelastic Instability During Friction of Composite Brake Discs

IF 0.6 4区 工程技术 Q4 MECHANICS Mechanics of Solids Pub Date : 2024-12-28 DOI:10.1134/S0025654424603343
A. G. Shpenev
{"title":"Modeling of the Surface Film Influence on Thermoelastic Instability During Friction of Composite Brake Discs","authors":"A. G. Shpenev","doi":"10.1134/S0025654424603343","DOIUrl":null,"url":null,"abstract":"<p>The paper examines the process of thermoelastic instability occurrence during unsteady friction of anisotropic disk samples in the presence of a third body film on the friction surface. This process takes place during the operation of highly loaded braking systems (in aviation and railway transport), specialized clutches of motor vehicles and in other mechanisms. The presence of surface film leads to a decrease in surface wear simultaneously with the emergence of significant nonlinearity in the wear rate. The finite difference method was used to simulate the mutual influence of wear, frictional heating, elastic deformations and the evolution of the film on the friction surface. The process of friction and wear of discs was studied taking into account the history of a series of braking events. The annular shape of surface pressures and temperatures distribution is considered. The evolution of disc wear from braking to braking for the case of the film presence was compared with the case of film absence and experimentally measured wear.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 4","pages":"1909 - 1919"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424603343","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper examines the process of thermoelastic instability occurrence during unsteady friction of anisotropic disk samples in the presence of a third body film on the friction surface. This process takes place during the operation of highly loaded braking systems (in aviation and railway transport), specialized clutches of motor vehicles and in other mechanisms. The presence of surface film leads to a decrease in surface wear simultaneously with the emergence of significant nonlinearity in the wear rate. The finite difference method was used to simulate the mutual influence of wear, frictional heating, elastic deformations and the evolution of the film on the friction surface. The process of friction and wear of discs was studied taking into account the history of a series of braking events. The annular shape of surface pressures and temperatures distribution is considered. The evolution of disc wear from braking to braking for the case of the film presence was compared with the case of film absence and experimentally measured wear.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复合制动盘摩擦过程中表面膜对热弹性失稳影响的建模
本文研究了摩擦表面存在第三体膜时各向异性圆盘试样非定常摩擦时热弹性失稳的发生过程。这一过程发生在高负荷制动系统(航空和铁路运输)、机动车辆的专用离合器和其他机构的操作过程中。表面膜的存在使表面磨损降低,同时磨损率出现明显的非线性。采用有限差分法模拟了磨损、摩擦加热、弹性变形和摩擦表面膜层演化的相互影响。考虑到一系列制动事件的历史,研究了制动盘的摩擦磨损过程。考虑了表面压力和温度的环形分布。比较了有膜情况下制动盘从制动到制动盘磨损的演变与无膜情况和实验测量的磨损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
期刊最新文献
Scale Effect in Modeling of Mechanical Processes in the Vicinity of a Borhole on a True Triaxial Loading Setup On the Maximum of the First Resonance Frequency for Inhomogeneous Elastic Bodies Non-Semisimple Degeneracy of Lamb Waves T-Stress in an Orthotropic Strip with a Central Semi-Infinite Crack Loaded Far from the Crack Tip Modeling of the Surface Film Influence on Thermoelastic Instability During Friction of Composite Brake Discs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1