{"title":"A review on the deformation tracking methods in vision-based tactile sensing technology","authors":"Benzhu Guo \n (, ), Shengyu Duan \n (, ), Panding Wang \n (, ), Hongshuai Lei \n (, ), Zeang Zhao \n (, ), Daining Fang \n (, )","doi":"10.1007/s10409-024-24436-x","DOIUrl":null,"url":null,"abstract":"<div><p>In daily life, human need various senses to obtain information about their surroundings, and touch is one of the five major human sensing signals. Similarly, it is extremely important for robots to be endowed with tactile sensing ability. In recent years, vision-based tactile sensing technology has been the research hotspot and frontier in the field of tactile perception. Compared to conventional tactile sensing technologies, vision-based tactile sensing technologies are capable of obtaining high-quality and high-resolution tactile information at a lower cost, while not being limited by the size and shape of sensors. Several previous articles have reviewed the sensing mechanism and electrical components of vision-based sensors, greatly promoting the innovation of tactile sensing. Different from existing reviews, this article concentrates on the underlying tracking method which converts real-time images into deformation information, including contact, sliding and friction. We will show the history and development of both model-based and model-free tracking methods, among which model-based approaches rely on schematic mechanical theories, and model-free approaches mainly involve machine learning algorithms. Comparing the efficiency and accuracy of existing deformation tracking methods, future research directions of vision-based tactile sensors for smart manipulations and robots are also discussed.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10409-024-24436-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24436-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In daily life, human need various senses to obtain information about their surroundings, and touch is one of the five major human sensing signals. Similarly, it is extremely important for robots to be endowed with tactile sensing ability. In recent years, vision-based tactile sensing technology has been the research hotspot and frontier in the field of tactile perception. Compared to conventional tactile sensing technologies, vision-based tactile sensing technologies are capable of obtaining high-quality and high-resolution tactile information at a lower cost, while not being limited by the size and shape of sensors. Several previous articles have reviewed the sensing mechanism and electrical components of vision-based sensors, greatly promoting the innovation of tactile sensing. Different from existing reviews, this article concentrates on the underlying tracking method which converts real-time images into deformation information, including contact, sliding and friction. We will show the history and development of both model-based and model-free tracking methods, among which model-based approaches rely on schematic mechanical theories, and model-free approaches mainly involve machine learning algorithms. Comparing the efficiency and accuracy of existing deformation tracking methods, future research directions of vision-based tactile sensors for smart manipulations and robots are also discussed.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics