Nonlocal Solutions of the Theory of Elasticity Problems for an Infinite Space Loaded with Concentrated Forces

IF 0.6 4区 工程技术 Q4 MECHANICS Mechanics of Solids Pub Date : 2024-12-28 DOI:10.1134/S0025654424700328
V. V. Vasiliev, S. A. Lurie, V. A. Salov
{"title":"Nonlocal Solutions of the Theory of Elasticity Problems for an Infinite Space Loaded with Concentrated Forces","authors":"V. V. Vasiliev,&nbsp;S. A. Lurie,&nbsp;V. A. Salov","doi":"10.1134/S0025654424700328","DOIUrl":null,"url":null,"abstract":"<p>Two classical problems of the theory of elasticity are considered in the paper. The first is the Kelvin problem for an infinite space loaded with a concentrated force. The classical solution is singular and specifies an infinitely high displacement of the point of the force application which has no physical meaning. To obtain a physically consistent solution, the nonlocal theory of elasticity is used, which, in contrast to the classical theory, is based on the equations derived for an element of continuum that has small but finite dimensions, and allows one to obtain regular solutions for traditional singular problems. The equations of the nonlocal theory include an additional experimental constant, which has the dimension of length and cannot be determined for a space problem. Consequently, the second problem for an infinite plane loaded with two concentrated forces lying on the same straight line and acting in the opposite directions is considered. The classical solution of this problem is also singular and specifies an infinitely high elongation of the distance between the forces, irrespective of their magnitude. The solution of this problem is also obtained within the framework of the nonlocal theory of elasticity, which specifies a regular dependence of this distance on the forces magnitude. This solution also includes an additional constant which is determined experimentally for a plane problem.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 4","pages":"1833 - 1840"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424700328","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two classical problems of the theory of elasticity are considered in the paper. The first is the Kelvin problem for an infinite space loaded with a concentrated force. The classical solution is singular and specifies an infinitely high displacement of the point of the force application which has no physical meaning. To obtain a physically consistent solution, the nonlocal theory of elasticity is used, which, in contrast to the classical theory, is based on the equations derived for an element of continuum that has small but finite dimensions, and allows one to obtain regular solutions for traditional singular problems. The equations of the nonlocal theory include an additional experimental constant, which has the dimension of length and cannot be determined for a space problem. Consequently, the second problem for an infinite plane loaded with two concentrated forces lying on the same straight line and acting in the opposite directions is considered. The classical solution of this problem is also singular and specifies an infinitely high elongation of the distance between the forces, irrespective of their magnitude. The solution of this problem is also obtained within the framework of the nonlocal theory of elasticity, which specifies a regular dependence of this distance on the forces magnitude. This solution also includes an additional constant which is determined experimentally for a plane problem.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集中力作用下无限空间弹性理论问题的非局部解
本文研究了弹性理论中的两个经典问题。第一个是开尔文问题,适用于承载集中力的无限空间。经典解是奇异解,并规定了施力点的无限大位移,没有物理意义。为了获得物理上一致的解,使用了非局部弹性理论,它与经典理论不同,它基于对具有小而有限维的连续统单元的推导方程,并允许人们获得传统奇异问题的正则解。非定域理论的方程包含一个额外的实验常数,该实验常数具有长度的维度,对于空间问题无法确定。因此,考虑了在同一直线上有两个集中力且作用方向相反的无限平面上的第二个问题。这个问题的经典解也是奇异的,并且规定了力之间距离的无限大延伸,而不管它们的大小。在非局部弹性理论的框架内也得到了该问题的解,该理论规定了该距离与力大小的规则依赖关系。该解决方案还包括一个额外的常数,这是由实验确定的平面问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
期刊最新文献
Scale Effect in Modeling of Mechanical Processes in the Vicinity of a Borhole on a True Triaxial Loading Setup On the Maximum of the First Resonance Frequency for Inhomogeneous Elastic Bodies Non-Semisimple Degeneracy of Lamb Waves T-Stress in an Orthotropic Strip with a Central Semi-Infinite Crack Loaded Far from the Crack Tip Modeling of the Surface Film Influence on Thermoelastic Instability During Friction of Composite Brake Discs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1