An Efficient Hyperbolic Kernel Function Yielding the Best Known Iteration Bounds for Linear Programming

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED Acta Mathematicae Applicatae Sinica, English Series Pub Date : 2024-12-26 DOI:10.1007/s10255-024-1146-z
Imene Touil, Wided Chikouche, Djamel Benterki, Amina Zerari
{"title":"An Efficient Hyperbolic Kernel Function Yielding the Best Known Iteration Bounds for Linear Programming","authors":"Imene Touil,&nbsp;Wided Chikouche,&nbsp;Djamel Benterki,&nbsp;Amina Zerari","doi":"10.1007/s10255-024-1146-z","DOIUrl":null,"url":null,"abstract":"<div><p>Interior-point methods (IPMs) for linear programming (LP) are generally based on the logarithmic barrier function. Peng et al. (J. Comput. Technol. 6: 61–80, 2001) were the first to propose non-logarithmic kernel functions (KFs) for solving IPMs. These KFs are strongly convex and smoothly coercive on their domains. Later, Bai et al. (SIAM J. Optim. 15(1): 101–128, 2004) introduced the first KF with a trigonometric barrier term. Since then, no new type of KFs were proposed until 2020, when Touil and Chikouche (Filomat. 34(12): 3957–3969, 2020; Acta Math. Sin. (Engl. Ser.), 38(1): 44–67, 2022) introduced the first hyperbolic KFs for semidefinite programming (SDP). They established that the iteration complexities of algorithms based on their proposed KFs are <span>\\({\\cal O}(n^{2 \\over 3} \\log {n \\over \\epsilon})\\)</span> and <span>\\({\\cal O}(n^{3 \\over 4} \\log {n \\over \\epsilon})\\)</span> for large-update methods, respectively. The aim of this work is to improve the complexity result for large-update method. In fact, we present a new parametric KF with a hyperbolic barrier term. By simple tools, we show that the worst-case iteration complexity of our algorithm for the large-update method is <span>\\({\\cal O}({\\sqrt n} \\ \\log n \\ \\log{n \\over \\epsilon})\\)</span> iterations. This coincides with the currently best-known iteration bounds for IPMs based on all existing kind of KFs.</p><p>The algorithm based on the proposed KF has been tested. Extensive numerical simulations on test problems with different sizes have shown that this KF has promising results.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 1","pages":"133 - 151"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1146-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Interior-point methods (IPMs) for linear programming (LP) are generally based on the logarithmic barrier function. Peng et al. (J. Comput. Technol. 6: 61–80, 2001) were the first to propose non-logarithmic kernel functions (KFs) for solving IPMs. These KFs are strongly convex and smoothly coercive on their domains. Later, Bai et al. (SIAM J. Optim. 15(1): 101–128, 2004) introduced the first KF with a trigonometric barrier term. Since then, no new type of KFs were proposed until 2020, when Touil and Chikouche (Filomat. 34(12): 3957–3969, 2020; Acta Math. Sin. (Engl. Ser.), 38(1): 44–67, 2022) introduced the first hyperbolic KFs for semidefinite programming (SDP). They established that the iteration complexities of algorithms based on their proposed KFs are \({\cal O}(n^{2 \over 3} \log {n \over \epsilon})\) and \({\cal O}(n^{3 \over 4} \log {n \over \epsilon})\) for large-update methods, respectively. The aim of this work is to improve the complexity result for large-update method. In fact, we present a new parametric KF with a hyperbolic barrier term. By simple tools, we show that the worst-case iteration complexity of our algorithm for the large-update method is \({\cal O}({\sqrt n} \ \log n \ \log{n \over \epsilon})\) iterations. This coincides with the currently best-known iteration bounds for IPMs based on all existing kind of KFs.

The algorithm based on the proposed KF has been tested. Extensive numerical simulations on test problems with different sizes have shown that this KF has promising results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
给出线性规划最优迭代界的有效双曲核函数
线性规划的内点法通常是基于对数障碍函数的。(J. Comput.)技术,6:61-80,2001)是第一个提出求解ipm的非对数核函数(KFs)。这些KFs在它们的域上是强凸和光滑强制的。随后,Bai等(SIAM J. Optim. 15(1): 101 - 128,2004)引入了第一个带三角势垒项的KF。此后,直到2020年,Touil and Chikouche (Filomat. 34(12): 3957-3969, 2020;数学学报。罪恶。【翻译】数学学报(自然科学版),38(1):44-67,2022)引入了半定规划(SDP)的第一个双曲KFs。他们建立了基于他们提出的KFs的算法的迭代复杂性,对于大更新方法分别为\({\cal O}(n^{2 \over 3} \log {n \over \epsilon})\)和\({\cal O}(n^{3 \over 4} \log {n \over \epsilon})\)。本文的目的是为了提高大更新方法的复杂度结果。实际上,我们提出了一个新的带有双曲势垒项的参数KF。通过简单的工具,我们证明了大更新方法的算法的最坏情况迭代复杂度为\({\cal O}({\sqrt n} \ \log n \ \log{n \over \epsilon})\)迭代。这与目前最著名的基于所有现有KFs类型的ipm的迭代边界一致。该算法基于所提出的KF进行了测试。对不同规模的测试问题进行了大量的数值模拟,结果表明该KF具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
期刊最新文献
The Path-Connectivity of Hierarchical Cubic Networks Two Nonmonotone Proximal Gradient Methods for Nonsmooth Optimization over the Stiefel Manifold Global Dynamics of a Delayed HIV-1 Infection Model with Cell-to-cell Transmission, Humoral Immunity and Immune Impairment Local Regularity Criteria for the 3D Co-rotational Beris-Edwards System in Lorentz Spaces Ergodicity of a Special Class of Markov Chains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1