Noura Alsedais, Mohamed Ahmed Mansour, Abdelraheem Mahmoud Aly, Sara I. Abdelsalam
{"title":"Artificial neural network validation of MHD natural bioconvection in a square enclosure: entropic analysis and optimization","authors":"Noura Alsedais, Mohamed Ahmed Mansour, Abdelraheem Mahmoud Aly, Sara I. Abdelsalam","doi":"10.1007/s10409-024-24507-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study numerically investigates inclined magneto-hydrodynamic natural convection in a porous cavity filled with nanofluid containing gyrotactic microorganisms. The governing equations are nondimensionalized and solved using the finite volume method. The simulations examine the impact of key parameters such as heat source length and position, Peclet number, porosity, and heat generation/absorption on flow patterns, temperature distribution, concentration profiles, and microorganism rotation. Results indicate that extending the heat source length enhances convective currents and heat transfer efficiency, while optimizing the heat source position reduces entropy generation. Higher Peclet numbers amplify convective currents and microorganism distribution complexity. Variations in porosity and heat generation/absorption significantly influence flow dynamics. Additionally, the artificial neural network model reliably predicts the mean Nusselt and Sherwood numbers (<span>\\(\\overline{Nu}\\)</span> & <span>\\(\\overline{Sh}\\)</span>), demonstrating its effectiveness for such analyses. The simulation results reveal that increasing the heat source length significantly enhances heat transfer, as evidenced by a 15% increase in the mean Nusselt number.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24507-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study numerically investigates inclined magneto-hydrodynamic natural convection in a porous cavity filled with nanofluid containing gyrotactic microorganisms. The governing equations are nondimensionalized and solved using the finite volume method. The simulations examine the impact of key parameters such as heat source length and position, Peclet number, porosity, and heat generation/absorption on flow patterns, temperature distribution, concentration profiles, and microorganism rotation. Results indicate that extending the heat source length enhances convective currents and heat transfer efficiency, while optimizing the heat source position reduces entropy generation. Higher Peclet numbers amplify convective currents and microorganism distribution complexity. Variations in porosity and heat generation/absorption significantly influence flow dynamics. Additionally, the artificial neural network model reliably predicts the mean Nusselt and Sherwood numbers (\(\overline{Nu}\) & \(\overline{Sh}\)), demonstrating its effectiveness for such analyses. The simulation results reveal that increasing the heat source length significantly enhances heat transfer, as evidenced by a 15% increase in the mean Nusselt number.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics