{"title":"Influence of residual stress on corrosion and mechanical properties of silicon carbide-reinforced nickel–tungsten coatings","authors":"Swarnima Singh, Anup Kumar Keshri, Sisir Mantry","doi":"10.1007/s12034-024-03369-z","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel–tungsten (Ni–W) coatings reinforced with silicon carbide (SiC) were successfully produced on a steel substrate using the pulse electrodeposition method (PED). Influence of SiC addition on phases, crystallite size, dislocation density, residual stress, mechanical properties and corrosion resistance of the coating were investigated. Field emission scanning electron microscopy (FESEM) images revealed a refinement in the coating’s surface morphology and distribution of SiC particles. Higher residual stress observed in the as-deposited Ni–W coating was attributed to hydrogen dissolution into the coating, leading to lattice expansion, with the subsequent release of hydrogen, contributing to this stress. Addition of SiC to the Ni–W coating resulted in improvements in hardness and bonding strength by ~23% and ~184%, respectively. Moreover, the addition of SiC to Ni–W coating led to a reduction in the coefficient of friction by about ~34% compared to Ni–W coating. Corrosion properties were evaluated using an immersion test in a 3.5 wt.% NaCl solution. The Ni–W–SiC composite coating exhibited significantly higher corrosion resistance, with ~67% decrease in corrosion rate compared to Ni–W coating. This enhanced corrosion resistance was linked to the grain refinement induced by SiC, which restricted the penetration of corrosive ions onto the substrate. Furthermore, the formation of a continuous barrier layer composed of SiO<sub>2</sub>, contributed to the improved corrosion resistance.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03369-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nickel–tungsten (Ni–W) coatings reinforced with silicon carbide (SiC) were successfully produced on a steel substrate using the pulse electrodeposition method (PED). Influence of SiC addition on phases, crystallite size, dislocation density, residual stress, mechanical properties and corrosion resistance of the coating were investigated. Field emission scanning electron microscopy (FESEM) images revealed a refinement in the coating’s surface morphology and distribution of SiC particles. Higher residual stress observed in the as-deposited Ni–W coating was attributed to hydrogen dissolution into the coating, leading to lattice expansion, with the subsequent release of hydrogen, contributing to this stress. Addition of SiC to the Ni–W coating resulted in improvements in hardness and bonding strength by ~23% and ~184%, respectively. Moreover, the addition of SiC to Ni–W coating led to a reduction in the coefficient of friction by about ~34% compared to Ni–W coating. Corrosion properties were evaluated using an immersion test in a 3.5 wt.% NaCl solution. The Ni–W–SiC composite coating exhibited significantly higher corrosion resistance, with ~67% decrease in corrosion rate compared to Ni–W coating. This enhanced corrosion resistance was linked to the grain refinement induced by SiC, which restricted the penetration of corrosive ions onto the substrate. Furthermore, the formation of a continuous barrier layer composed of SiO2, contributed to the improved corrosion resistance.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.