{"title":"Multiscale Numerical Simulation of Myocardium Subjected to Blunt Trauma","authors":"Zhiyan Feng, Yaoke Wen, Meng Wang, Cheng Xu, Weixiao Nie, Lizhen Wang, Fangdong Dong","doi":"10.1134/S0025654424604488","DOIUrl":null,"url":null,"abstract":"<p>This study developed a macroscopic finite element model of the human body wearing NIJ III body armor target against blunt impacts of DBP10 type 5.8 mm rifle bullets and a microscopic representative volume element (RVE) finite element model of myocardial tissue to conduct multiscale numerical simulations of myocardium under blunt impact effects. Experimental tests on the bullet penetration of ballistic panels were compared with numerical simulations to validate the effectiveness of the macroscopic finite element model. Uniaxial quasi-static compression tests on sheep hearts were carried out, and the constitutive parameters of cardiac muscle fibers and connective tissues in the microscopic RVE model of myocardial tissue were fitted using the inverse finite element method. The numerical simulation results indicate that in the macroscopic behind armor blunt trauma (BABT) numerical simulation, the maximum stress in the heart reached 373 kPa, with a maximum nominal strain of 0.19. The calculated injury score for the heart was 0, indicating no damage. In the microscopic RVE model of myocardial tissue, stress was mainly concentrated in the connective tissue, with cardiac muscle fibers generally exhibiting higher strains than the connective tissues. Localized areas of high pressure were observed in the connective tissue, which could compress capillaries in the connective tissue, potentially leading to minor bleeding as indicated by blood pressure values.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 4","pages":"2492 - 2508"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424604488","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study developed a macroscopic finite element model of the human body wearing NIJ III body armor target against blunt impacts of DBP10 type 5.8 mm rifle bullets and a microscopic representative volume element (RVE) finite element model of myocardial tissue to conduct multiscale numerical simulations of myocardium under blunt impact effects. Experimental tests on the bullet penetration of ballistic panels were compared with numerical simulations to validate the effectiveness of the macroscopic finite element model. Uniaxial quasi-static compression tests on sheep hearts were carried out, and the constitutive parameters of cardiac muscle fibers and connective tissues in the microscopic RVE model of myocardial tissue were fitted using the inverse finite element method. The numerical simulation results indicate that in the macroscopic behind armor blunt trauma (BABT) numerical simulation, the maximum stress in the heart reached 373 kPa, with a maximum nominal strain of 0.19. The calculated injury score for the heart was 0, indicating no damage. In the microscopic RVE model of myocardial tissue, stress was mainly concentrated in the connective tissue, with cardiac muscle fibers generally exhibiting higher strains than the connective tissues. Localized areas of high pressure were observed in the connective tissue, which could compress capillaries in the connective tissue, potentially leading to minor bleeding as indicated by blood pressure values.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.