{"title":"Valley-Dependent Crossed Andreev Reflection in Graphene/Superconductor/Line-Defect Superlattice Junctions","authors":"Chongdan Ren, Yuqiao Ren, Hongyu Tian","doi":"10.1007/s10948-024-06895-3","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene, a two-dimensional material with remarkable electronic properties, offers significant potential for valley-based electronic devices. In this study, we explore a novel mechanism to achieve valley-dependent, near-perfect crossed Andreev reflection (CAR) in graphene-based junctions by utilizing the valley degree of freedom in a graphene/superconductor/line defect superlattice (LDGSL) structure. The LDGSL introduces unique valley-filtering effects. By incorporating staggered pseudospin potentials and intrinsic spin-orbit coupling in the left graphene electrode, the system selectively enhances CAR for electrons in the K<span>\\('\\)</span> valley, while simultaneously suppressing local Andreev reflection and elastic cotunneling (ECT). Numerical simulations reveal that CAR is nearly perfect for K<span>\\('\\)</span> valley electrons with spin-up, while for K valley electrons with spin-down, only ECT is observed. Our results demonstrate the viability of this approach for valley-polarized CAR in graphene/ superconductor junctions, providing a pathway for the development of valley-based quantum information devices.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06895-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene, a two-dimensional material with remarkable electronic properties, offers significant potential for valley-based electronic devices. In this study, we explore a novel mechanism to achieve valley-dependent, near-perfect crossed Andreev reflection (CAR) in graphene-based junctions by utilizing the valley degree of freedom in a graphene/superconductor/line defect superlattice (LDGSL) structure. The LDGSL introduces unique valley-filtering effects. By incorporating staggered pseudospin potentials and intrinsic spin-orbit coupling in the left graphene electrode, the system selectively enhances CAR for electrons in the K\('\) valley, while simultaneously suppressing local Andreev reflection and elastic cotunneling (ECT). Numerical simulations reveal that CAR is nearly perfect for K\('\) valley electrons with spin-up, while for K valley electrons with spin-down, only ECT is observed. Our results demonstrate the viability of this approach for valley-polarized CAR in graphene/ superconductor junctions, providing a pathway for the development of valley-based quantum information devices.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.