Optimized chelator and nanoparticle strategies for high-activity 103Pd-loaded biodegradable brachytherapy seeds

IF 4.4 Q1 CHEMISTRY, INORGANIC & NUCLEAR EJNMMI Radiopharmacy and Chemistry Pub Date : 2024-12-30 DOI:10.1186/s41181-024-00309-4
Emanuel Sporer, Claire Deville, Natan J. W. Straathof, Linda M. Bruun, Ulli Köster, Mikael Jensen, Thomas L. Andresen, Paul J. Kempen, Jonas R. Henriksen, Andreas I. Jensen
{"title":"Optimized chelator and nanoparticle strategies for high-activity 103Pd-loaded biodegradable brachytherapy seeds","authors":"Emanuel Sporer,&nbsp;Claire Deville,&nbsp;Natan J. W. Straathof,&nbsp;Linda M. Bruun,&nbsp;Ulli Köster,&nbsp;Mikael Jensen,&nbsp;Thomas L. Andresen,&nbsp;Paul J. Kempen,&nbsp;Jonas R. Henriksen,&nbsp;Andreas I. Jensen","doi":"10.1186/s41181-024-00309-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Brachytherapy (BT) is routinely used in the treatment of various cancers. Current BT relies on the placement of large sources of radioactivity at the tumor site, requiring applicators that may cause local traumas and lesions. Further, they suffer from inflexibility in where they can be placed and some sources reside permanently in the body, causing potential long-term discomfort. These issues can be circumvented through injectable sources, prepared as biodegradable materials containing radionuclides that form solid seeds after administration. The level of radioactivity contained in such seeds must be sufficient to achieve substantial local irradiation. In this report, we investigate two different strategies for biodegradable BT seeds.</p><h3>Results</h3><p>The first strategy entails injectable seeds based on <sup>103</sup>Pd-labeled palladium-gold alloy nanoparticles ([<sup>103</sup>Pd]PdAuNPs). These were prepared by combining [<sup>103</sup>Pd]PdH<sub>2</sub>Cl<sub>4</sub> and AuHCl<sub>4</sub>, followed by lipophilic surface coating and dispersed in lactose octaisobutyrate and ethanol (LOIB:EtOH), in overall radiochemical yield (RCY) of 83%. With the second strategy, [<sup>103</sup>Pd]Pd-SSIB was prepared by conjugating the [16]aneS<sub>4</sub> chelator with lipophilic sucrose septaisobutyrate (SSIB) followed by complexation with [<sup>103</sup>Pd]PdH<sub>2</sub>Cl<sub>4</sub> (RCY = 99%) and mixed with LOIB:EtOH. [<sup>103</sup>Pd]Pd-SSIB was likewise formulated as injectable liquid forming seeds by mixing with LOIB. Both formulations reached activities of 1.0–1.5 GBq/mL and negligible release of radioactivity after injection of 100 µL (100–150 MBq) into aqueous buffer or mouse serum of less than 1% over one month.</p><h3>Conclusion</h3><p>Both strategies for forming injectable BT seeds containing high <sup>103</sup>Pd activity resulted in high radiolabeling yields, high activity per seed, and high activity retention. We consider both strategies suitable for BT, with the preferable strategy using a [16]aneS<sub>4</sub> chelator due to its higher biodegradability.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00309-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-024-00309-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Brachytherapy (BT) is routinely used in the treatment of various cancers. Current BT relies on the placement of large sources of radioactivity at the tumor site, requiring applicators that may cause local traumas and lesions. Further, they suffer from inflexibility in where they can be placed and some sources reside permanently in the body, causing potential long-term discomfort. These issues can be circumvented through injectable sources, prepared as biodegradable materials containing radionuclides that form solid seeds after administration. The level of radioactivity contained in such seeds must be sufficient to achieve substantial local irradiation. In this report, we investigate two different strategies for biodegradable BT seeds.

Results

The first strategy entails injectable seeds based on 103Pd-labeled palladium-gold alloy nanoparticles ([103Pd]PdAuNPs). These were prepared by combining [103Pd]PdH2Cl4 and AuHCl4, followed by lipophilic surface coating and dispersed in lactose octaisobutyrate and ethanol (LOIB:EtOH), in overall radiochemical yield (RCY) of 83%. With the second strategy, [103Pd]Pd-SSIB was prepared by conjugating the [16]aneS4 chelator with lipophilic sucrose septaisobutyrate (SSIB) followed by complexation with [103Pd]PdH2Cl4 (RCY = 99%) and mixed with LOIB:EtOH. [103Pd]Pd-SSIB was likewise formulated as injectable liquid forming seeds by mixing with LOIB. Both formulations reached activities of 1.0–1.5 GBq/mL and negligible release of radioactivity after injection of 100 µL (100–150 MBq) into aqueous buffer or mouse serum of less than 1% over one month.

Conclusion

Both strategies for forming injectable BT seeds containing high 103Pd activity resulted in high radiolabeling yields, high activity per seed, and high activity retention. We consider both strategies suitable for BT, with the preferable strategy using a [16]aneS4 chelator due to its higher biodegradability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
8.70%
发文量
30
审稿时长
5 weeks
期刊最新文献
Preclinical evaluation of the potential PARP-imaging probe [carbonyl-11C]DPQ Optimized chelator and nanoparticle strategies for high-activity 103Pd-loaded biodegradable brachytherapy seeds Development and evaluation of deuterated [18F]JHU94620 isotopologues for the non-invasive assessment of the cannabinoid type 2 receptor in brain First preclinical SPECT/CT imaging and biodistribution of [165Er]ErCl3 and [165Er]Er-PSMA-617 Production of high purity 47Sc from proton irradiation of natural vanadium targets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1