Increased drying threatens alpine pond biodiversity more than temperature increase in a changing climate

IF 2 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Aquatic Sciences Pub Date : 2024-12-28 DOI:10.1007/s00027-024-01155-x
M. Lamouille-Hébert, F. Arthaud, A. Besnard, M. Logez, T. Datry
{"title":"Increased drying threatens alpine pond biodiversity more than temperature increase in a changing climate","authors":"M. Lamouille-Hébert,&nbsp;F. Arthaud,&nbsp;A. Besnard,&nbsp;M. Logez,&nbsp;T. Datry","doi":"10.1007/s00027-024-01155-x","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change is one of the main drivers of biodiversity decline. Rapidly changing climate in the form of warming, drying, and habitat isolation causes freshwater species to change their spatial extent, as most species have little capacity for in situ responses. However, the relative contribution of these three effects to freshwater species’ changing spatial distributions is actively debated. To shed light on this debate, we explored temperature, hydroperiod, and habitat connectivity effects on alpine pond species occupancy probabilities in the northern French Alps. We studied alpine ponds as ideal test systems because they face climate change effects more rapidly, and in more concentrated areas, than any other freshwater ecosystem. We used multispecies occupancy models with three biological groups (amphibians, macrophytes, and Odonata) to examine contrasting responses to climate change. Contrary to expectations, temperature was not the main driver of species occupancy probabilities. Instead, hydroperiod and connectivity were stronger predictors of species occupancy probabilities. Furthermore, temperature increases had the same effect on occupancy probabilities of non-alpine specialist and alpine specialist species. Nonetheless, temperature disproportionately affected a greater number of specialist species compared with non-alpine specialists. We conclude that climate change mitigation will primarily benefit a greater number of alpine specialist species than non-alpine specialists. Finally, we suggest that enhancing our understanding of freshwater hydroperiods will improve our predictions of climate change effects on freshwater species distributions.</p></div>","PeriodicalId":55489,"journal":{"name":"Aquatic Sciences","volume":"87 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00027-024-01155-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00027-024-01155-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is one of the main drivers of biodiversity decline. Rapidly changing climate in the form of warming, drying, and habitat isolation causes freshwater species to change their spatial extent, as most species have little capacity for in situ responses. However, the relative contribution of these three effects to freshwater species’ changing spatial distributions is actively debated. To shed light on this debate, we explored temperature, hydroperiod, and habitat connectivity effects on alpine pond species occupancy probabilities in the northern French Alps. We studied alpine ponds as ideal test systems because they face climate change effects more rapidly, and in more concentrated areas, than any other freshwater ecosystem. We used multispecies occupancy models with three biological groups (amphibians, macrophytes, and Odonata) to examine contrasting responses to climate change. Contrary to expectations, temperature was not the main driver of species occupancy probabilities. Instead, hydroperiod and connectivity were stronger predictors of species occupancy probabilities. Furthermore, temperature increases had the same effect on occupancy probabilities of non-alpine specialist and alpine specialist species. Nonetheless, temperature disproportionately affected a greater number of specialist species compared with non-alpine specialists. We conclude that climate change mitigation will primarily benefit a greater number of alpine specialist species than non-alpine specialists. Finally, we suggest that enhancing our understanding of freshwater hydroperiods will improve our predictions of climate change effects on freshwater species distributions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Sciences
Aquatic Sciences 环境科学-海洋与淡水生物学
CiteScore
3.90
自引率
4.20%
发文量
60
审稿时长
1 months
期刊介绍: Aquatic Sciences – Research Across Boundaries publishes original research, overviews, and reviews dealing with aquatic systems (both freshwater and marine systems) and their boundaries, including the impact of human activities on these systems. The coverage ranges from molecular-level mechanistic studies to investigations at the whole ecosystem scale. Aquatic Sciences publishes articles presenting research across disciplinary and environmental boundaries, including studies examining interactions among geological, microbial, biological, chemical, physical, hydrological, and societal processes, as well as studies assessing land-water, air-water, benthic-pelagic, river-ocean, lentic-lotic, and groundwater-surface water interactions.
期刊最新文献
Increased drying threatens alpine pond biodiversity more than temperature increase in a changing climate Seasonal variations in water quality and phytoplankton–bacteria interactions mediated through dissolved organic matter in New Jersey coastal waters New insight into barium toxicity in the gills of the European clam (Ruditapes decussatus): a focus on redox status, fatty acids profiles, and histological structures Structural and functional responses of lotic biofilm to abrasive sediments and P enrichment: an indoor experimental approach Avoidance behavior of grass carp (Ctenopharyngodon idella) shoals to low-frequency sound stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1