Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2024-12-28 DOI:10.1007/s00253-024-13379-w
Emma E. Tobin, Joseph H. Collins, Celeste B. Marsan, Gillian T. Nadeau, Kim Mori, Anna Lipzen, Stephen Mondo, Igor V. Grigoriev, Eric M. Young
{"title":"Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938","authors":"Emma E. Tobin,&nbsp;Joseph H. Collins,&nbsp;Celeste B. Marsan,&nbsp;Gillian T. Nadeau,&nbsp;Kim Mori,&nbsp;Anna Lipzen,&nbsp;Stephen Mondo,&nbsp;Igor V. Grigoriev,&nbsp;Eric M. Young","doi":"10.1007/s00253-024-13379-w","DOIUrl":null,"url":null,"abstract":"<p>Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast <i>Xanthophyllomyces dendrorhous</i> CBS 6938 (anamorph <i>Phaffia rhodozyma</i>) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. <i>X. dendrorhous</i> is currently the sole biotechnologically relevant yeast in the <i>Tremellomycete</i> class—it produces large amounts of astaxanthin, especially under oxidative stress and exposure to light. Thus, we performed transcriptomics on <i>X. dendrorhous</i> under different wavelengths of light (red, green, blue, and ultraviolet) and oxidative stress. Differential gene expression analysis (DGE) revealed that terpenoid biosynthesis was primarily upregulated by light through <i>crtI</i>, while oxidative stress upregulated several genes in the pathway. Further gene ontology (GO) analysis revealed a complex survival response to ultraviolet (UV) where <i>X. dendrorhous</i> upregulates aromatic amino acid and tetraterpenoid biosynthesis and downregulates central carbon metabolism and respiration. The DGE data was also used to identify 26 constitutive and regulated genes, and then, putative promoters for each of the 26 genes were derived from the genome. Simultaneously, a modular cloning system for <i>X. dendrorhous</i> was developed, including integration sites, terminators, selection markers, and reporters. Each of the 26 putative promoters were integrated into the genome and characterized by luciferase assay in the dark and under UV light. The putative constitutive promoters were constitutive in the synthetic genetic context, but so were many of the putative regulated promoters. Notably, one putative promoter, derived from a hypothetical gene, showed ninefold activation upon UV exposure. Thus, this study reveals metabolic pathway regulation and develops a genetic parts collection for <i>X. dendrorhous</i> from transcriptomic data<i>.</i> Therefore, this study demonstrates that combining systems biology and synthetic biology into an omics-to-parts workflow can simultaneously provide useful biological insight and genetic tools for nonconventional microbes, particularly those without a related model organism. This approach can enhance current efforts to engineer diverse microbes.</p><p>• <i>Transcriptomics revealed further insights into the photobiology of X. dendrorhous, specifically metabolic nodes that are transcriptionally regulated by light.</i></p><p>• <i>A modular genetic part collection was developed, including 26 constitutive and regulated promoters derived from the transcriptomics of X. dendrorhous.</i></p><p>• <i>Omics-to-parts can be applied to nonconventional microbes for rapid “onboarding”.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-024-13379-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-024-13379-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X. dendrorhous is currently the sole biotechnologically relevant yeast in the Tremellomycete class—it produces large amounts of astaxanthin, especially under oxidative stress and exposure to light. Thus, we performed transcriptomics on X. dendrorhous under different wavelengths of light (red, green, blue, and ultraviolet) and oxidative stress. Differential gene expression analysis (DGE) revealed that terpenoid biosynthesis was primarily upregulated by light through crtI, while oxidative stress upregulated several genes in the pathway. Further gene ontology (GO) analysis revealed a complex survival response to ultraviolet (UV) where X. dendrorhous upregulates aromatic amino acid and tetraterpenoid biosynthesis and downregulates central carbon metabolism and respiration. The DGE data was also used to identify 26 constitutive and regulated genes, and then, putative promoters for each of the 26 genes were derived from the genome. Simultaneously, a modular cloning system for X. dendrorhous was developed, including integration sites, terminators, selection markers, and reporters. Each of the 26 putative promoters were integrated into the genome and characterized by luciferase assay in the dark and under UV light. The putative constitutive promoters were constitutive in the synthetic genetic context, but so were many of the putative regulated promoters. Notably, one putative promoter, derived from a hypothetical gene, showed ninefold activation upon UV exposure. Thus, this study reveals metabolic pathway regulation and develops a genetic parts collection for X. dendrorhous from transcriptomic data. Therefore, this study demonstrates that combining systems biology and synthetic biology into an omics-to-parts workflow can simultaneously provide useful biological insight and genetic tools for nonconventional microbes, particularly those without a related model organism. This approach can enhance current efforts to engineer diverse microbes.

Transcriptomics revealed further insights into the photobiology of X. dendrorhous, specifically metabolic nodes that are transcriptionally regulated by light.

A modular genetic part collection was developed, including 26 constitutive and regulated promoters derived from the transcriptomics of X. dendrorhous.

Omics-to-parts can be applied to nonconventional microbes for rapid “onboarding”.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
Precision tumor treatment utilizing bacteria: principles and future perspectives Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells Trans-nuclei CRISPR/Cas9: safe approach for genome editing in the edible mushroom excluding foreign DNA sequences Holistic monitoring of Campylobacter jejuni biofilms with NanoLuc bioluminescence Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1