{"title":"Platelet Membrane-Coated HGF-PLGA Nanoparticles Promote Therapeutic Angiogenesis and Tissue Perfusion Recovery in Ischemic Hindlimbs.","authors":"Peng Wang, Xiao Di, Fengshi Li, Zhihua Rong, Wenzhuo Lian, Zongshu Li, Tianqi Chen, Wenjing Wang, Qing Zhong, Guoqiang Sun, Leng Ni, ChangWei Liu","doi":"10.1021/acsabm.4c01373","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic angiogenesis has garnered significant attention as a potential treatment strategy for lower limb ischemic diseases. Although hepatocyte growth factor (HGF) has been identified as a key promoter of therapeutic angiogenesis, its clinical application is limited due to its short half-life. In this study, we successfully developed and characterized platelet membrane-coated HGF-poly(lactic-<i>co</i>-glycolic acid) (PLGA) nanoparticles (NPs). These nanoparticles demonstrated enhanced capabilities to promote endothelial cell (EC) proliferation, migration, and tube formation in vitro. Additionally, their efficacy in improving tissue perfusion and promoting angiogenesis was confirmed in a hindlimb ischemia rat model. Our findings suggest that platelet membrane-coated HGF-PLGA-NPs could serve as a promising therapeutic approach for enhancing angiogenesis and restoring tissue perfusion in ischemic conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic angiogenesis has garnered significant attention as a potential treatment strategy for lower limb ischemic diseases. Although hepatocyte growth factor (HGF) has been identified as a key promoter of therapeutic angiogenesis, its clinical application is limited due to its short half-life. In this study, we successfully developed and characterized platelet membrane-coated HGF-poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). These nanoparticles demonstrated enhanced capabilities to promote endothelial cell (EC) proliferation, migration, and tube formation in vitro. Additionally, their efficacy in improving tissue perfusion and promoting angiogenesis was confirmed in a hindlimb ischemia rat model. Our findings suggest that platelet membrane-coated HGF-PLGA-NPs could serve as a promising therapeutic approach for enhancing angiogenesis and restoring tissue perfusion in ischemic conditions.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.