Modeling Diffusive Motion of Ferredoxin and Plastocyanin on the PSI Domain of Procholorococcus marinus MIT9313.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-01-09 Epub Date: 2024-12-26 DOI:10.1021/acs.jpcb.4c05001
Aaron Chan, Emad Tajkhorshid, Zaida Luthey-Schulten, Melih Sener
{"title":"Modeling Diffusive Motion of Ferredoxin and Plastocyanin on the PSI Domain of <i>Procholorococcus marinus</i> MIT9313.","authors":"Aaron Chan, Emad Tajkhorshid, Zaida Luthey-Schulten, Melih Sener","doi":"10.1021/acs.jpcb.4c05001","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion of mobile charge carriers, such as ferredoxin and plastocyanin, often constitutes a rate-determining step in photosynthetic energy conversion. The diffusion time scales typically exceed that of other primary bioenergetic processes and remain beyond the reach of direct simulation at the molecular level. We characterize the diffusive kinetics of ferredoxin and plastocyanin upon the photosystem I-rich domain of <i>Prochlorococcus</i>, the most abundant phototroph on Earth by mass. A modeling approach for ferredoxin and plastocyanin diffusion is presented that uses ensembles of coarse-grained molecular dynamics simulations in Martini 2.2P with GROMACS 2021.2. The simulation ensembles are used to construct the diffusion coefficient and drift for ferredoxin and plastocyanin as spatial functions in the photosystem I domain of the MIT9313 ecotype. Four separate models are constructed, corresponding to ferredoxin and plastocyanin in reduced and oxidized states. A single scaling constant of 0.7 is found to be sufficient to adjust the diffusion coefficient obtained from the Martini simulation ensemble to match the in vitro values for both ferredoxin and plastocyanin. A comparison of Martini versions (2.2P, 2.2, 3) is presented with respect to diffusion scaling. The diffusion coefficient and drift together quantify the inhomogeneity of diffusive behavior. Notably, a funnel-like convergence toward the corresponding putative binding positions is observed for both ferredoxin and plastocyanin, even without such a priori foreknowledge supplied in the simulation protocol. The approach presented here is of relevance for studying diffusion kinetics in photosynthetic and other bioenergetic processes.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"52-70"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c05001","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion of mobile charge carriers, such as ferredoxin and plastocyanin, often constitutes a rate-determining step in photosynthetic energy conversion. The diffusion time scales typically exceed that of other primary bioenergetic processes and remain beyond the reach of direct simulation at the molecular level. We characterize the diffusive kinetics of ferredoxin and plastocyanin upon the photosystem I-rich domain of Prochlorococcus, the most abundant phototroph on Earth by mass. A modeling approach for ferredoxin and plastocyanin diffusion is presented that uses ensembles of coarse-grained molecular dynamics simulations in Martini 2.2P with GROMACS 2021.2. The simulation ensembles are used to construct the diffusion coefficient and drift for ferredoxin and plastocyanin as spatial functions in the photosystem I domain of the MIT9313 ecotype. Four separate models are constructed, corresponding to ferredoxin and plastocyanin in reduced and oxidized states. A single scaling constant of 0.7 is found to be sufficient to adjust the diffusion coefficient obtained from the Martini simulation ensemble to match the in vitro values for both ferredoxin and plastocyanin. A comparison of Martini versions (2.2P, 2.2, 3) is presented with respect to diffusion scaling. The diffusion coefficient and drift together quantify the inhomogeneity of diffusive behavior. Notably, a funnel-like convergence toward the corresponding putative binding positions is observed for both ferredoxin and plastocyanin, even without such a priori foreknowledge supplied in the simulation protocol. The approach presented here is of relevance for studying diffusion kinetics in photosynthetic and other bioenergetic processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Deciphering the Photophysical Properties of Nonplanar Heterocyclic Compounds in Different Polarity Environments. Investigating the Restricted Dynamical Environment in and Around Aβ Peptide Oligomers in Aqueous Ionic Liquid Solutions. Therapeutic Advantages of Nanoparticle-Impregnated Lysozyme Conjugates toward Amyloid-β Fibrillation and Antimicrobial Activity. Accurate Force Field for Carbon Dioxide-Silica Interactions Based on Density Functional Theory. Comprehensive Chemical Analysis of the Methyl 3-Nitrogen-2,3-Dideoxysaccharides Derivatives with d-ribo-Configuration: Synthesis, Reactivity of HIV-1 Reverse Transcriptase Inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1