Unsupervised Machine Learning Method for the Phase Behavior of the Constant Magnetization Ising Model in Two and Three Dimensions.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-01-09 Epub Date: 2024-12-26 DOI:10.1021/acs.jpcb.4c06261
Inhyuk Jang, Arun Yethiraj
{"title":"Unsupervised Machine Learning Method for the Phase Behavior of the Constant Magnetization Ising Model in Two and Three Dimensions.","authors":"Inhyuk Jang, Arun Yethiraj","doi":"10.1021/acs.jpcb.4c06261","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning methods have been important in the study of phase transitions. Unsupervised methods are particularly attractive because they do not require prior knowledge of the existence of a phase transition. In this work we focus on the constant magnetization Ising model in two (2D) and three (3D) dimensions. While there have been many studies using machine learning for the critical behavior of these systems, we are not aware of any studies for the phase diagram at off-critical magnetizations below the critical temperature. Previous work has used the raw spins as the input feature. We show that a more robust input feature is the local affinity, where the value of the feature at each site is determined by the spin and its neighbors. When coupled with a variational autoencoder, the method is able to predict the phase behavior of the 2D and 3D Ising models (including the critical exponent β) in quantitative agreement with conventional simulations. The choice of activation functions in the autoencoder is crucial, and this requires physical insight into the nature of the phase transition. The method is general and can be applied to any lattice or off-lattice system.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"532-539"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06261","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning methods have been important in the study of phase transitions. Unsupervised methods are particularly attractive because they do not require prior knowledge of the existence of a phase transition. In this work we focus on the constant magnetization Ising model in two (2D) and three (3D) dimensions. While there have been many studies using machine learning for the critical behavior of these systems, we are not aware of any studies for the phase diagram at off-critical magnetizations below the critical temperature. Previous work has used the raw spins as the input feature. We show that a more robust input feature is the local affinity, where the value of the feature at each site is determined by the spin and its neighbors. When coupled with a variational autoencoder, the method is able to predict the phase behavior of the 2D and 3D Ising models (including the critical exponent β) in quantitative agreement with conventional simulations. The choice of activation functions in the autoencoder is crucial, and this requires physical insight into the nature of the phase transition. The method is general and can be applied to any lattice or off-lattice system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Deciphering the Photophysical Properties of Nonplanar Heterocyclic Compounds in Different Polarity Environments. Investigating the Restricted Dynamical Environment in and Around Aβ Peptide Oligomers in Aqueous Ionic Liquid Solutions. Therapeutic Advantages of Nanoparticle-Impregnated Lysozyme Conjugates toward Amyloid-β Fibrillation and Antimicrobial Activity. Accurate Force Field for Carbon Dioxide-Silica Interactions Based on Density Functional Theory. Comprehensive Chemical Analysis of the Methyl 3-Nitrogen-2,3-Dideoxysaccharides Derivatives with d-ribo-Configuration: Synthesis, Reactivity of HIV-1 Reverse Transcriptase Inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1